所以.從而.即.---------2分 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設 (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設,,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學歸納法)①當時, ,命題成立;

   ②假設時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>

f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

(Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過怎樣的平移和伸縮變換得到?

(Ⅱ)若f (θ)=,其中,求cos(θ)的值;

【解析】第一問中,

變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數(shù)的圖象;

③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數(shù)的圖象;

第二問中因為,所以,則,又 ,,從而

進而得到結(jié)論。

(Ⅰ) 解:

!3

變換的步驟是:

①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數(shù)的圖象;

③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數(shù)的圖象;…………………………………3

(Ⅱ) 解:因為,所以,則,又 ,,從而……2

(1)當時,;…………2

(2)當時;

 

查看答案和解析>>

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.

(I)從袋中隨機抽取一個球,將其編號記為,然后從袋中余下的三個球中再隨機抽取一個球,將其編號記為.求關于的一元二次方程有實根的概率;

(II)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n.若以 作為點P的坐標,求點P落在區(qū)域內(nèi)的概率.

【解析】第一問利用古典概型概率求解所有的基本事件數(shù)共12種,然后利用方程有實根,則滿足△=4a2-4b2≥0,即a2≥b2。,這樣求得事件發(fā)生的基本事件數(shù)為6種,從而得到概率。第二問中,利用所有的基本事件數(shù)為16種。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。在求解滿足的基本事件數(shù)為(1,1) (2,1)  (2,2) (3,1) 共4種,結(jié)合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12種。

有實根, ∴△=4a2-4b2≥0,即a2≥b2

記“有實根”為事件A,則A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6種。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。

記“點P落在區(qū)域內(nèi)”為事件B,則B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4種!郟B.=

 

查看答案和解析>>

某商場搞促銷,當顧客購買商品的金額達到一定數(shù)量之后可以抽獎,根據(jù)顧客購買商品的金額,從箱中(裝有4只紅球,3只白球,且除顏色外,球的外部特征完全相同)每抽到一只紅球獎勵20元的商品,每抽到一只白球獎勵10元的商品(當顧客通過抽獎的方法確定了獲獎商品后,即將小球全部放回箱中).
(1)當顧客購買金額超過500元而少于1000元(含1000元)時,可從箱中一次隨機抽取3個小球,求其中至少有一個紅球的概率;
(2)當顧客購買金額超過1000元時,可一次隨機抽取4個小球,設他所獲獎商品的金額為ξ元,求ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

某商場搞促銷,當顧客購買商品的金額達到一定數(shù)量之后可以抽獎,根據(jù)顧客購買商品的金額,從箱中(裝有4只紅球,3只白球,且除顏色外,球的外部特征完全相同)每抽到一只紅球獎勵20元的商品,每抽到一只白球獎勵10元的商品(當顧客通過抽獎的方法確定了獲獎商品后,即將小球全部放回箱中).
(1)當顧客購買金額超過500元而少于1000元(含1000元)時,可從箱中一次隨機抽取3個小球,求其中至少有一個紅球的概率;
(2)當顧客購買金額超過1000元時,可一次隨機抽取4個小球,設他所獲獎商品的金額為ξ元,求ξ的概率分布列和數(shù)學期望.

查看答案和解析>>


同步練習冊答案