(1)設(shè).求證數(shù)列是等比數(shù)列.并求其前項(xiàng)和, 查看更多

 

題目列表(包括答案和解析)

已知{an}是等比數(shù)列,a1=2,a3=18;{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn的公式;
(3)設(shè)Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,試比較Pn與Qn的大小,并證明你的結(jié)論.

查看答案和解析>>

已知{an}是

等比數(shù)列,a1=2,a3=18,{bn}是等差數(shù)列b1=2,b1+b2+b3+b4=a1+a2+a3>20

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和Sn;

(3)設(shè)Pn=b1+b4+b7+…+b3n2,Qn=b10+b12+b14+…+b2n+8,其中n=1, 2……,試比較Pn與Qn的大小并證明你的結(jié)論。

查看答案和解析>>

已知{an}是
等比數(shù)列,a1=2,a3=18,{bn}是等差數(shù)列b1=2,b1+b2+b3+b4=a1+a2+a3>20
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)設(shè)Pn=b1+b4+b7+…+b3n2,Qn=b10+b12+b14+…+b2n+8,其中n="1," 2……,試比較Pn與Qn的大小并證明你的結(jié)論。

查看答案和解析>>

已知{an}是等比數(shù)列,a1=2,a3=18;{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn的公式;
(3)設(shè)Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,試比較Pn與Qn的大小,并證明你的結(jié)論.

查看答案和解析>>

已知{an}是等比數(shù)列,a1=2,a3=18;{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn的公式;
(3)設(shè)Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,試比較Pn與Qn的大小,并證明你的結(jié)論.

查看答案和解析>>


同步練習(xí)冊(cè)答案