題目列表(包括答案和解析)
“已知:中,,求證:”。下面寫出了用反證法證明這個命題過程中的四個推理步驟:
(1)所以,這與三角形內(nèi)角和定理相矛盾,;
(2)所以;
(3)假設(shè);
(4)那么,由,得,即
這四個步驟正確的順序應(yīng)是
A.(1)(2)(3)(4) | B.(3)(4)(2)(1) | C.(3)(4)(1)(2) | D.(3)(4)(2)(1) |
數(shù)列,滿足
(1)求,并猜想通項公式。
(2)用數(shù)學歸納法證明(1)中的猜想。
【解析】本試題主要考查了數(shù)列的通項公式求解,并用數(shù)學歸納法加以證明。第一問利用遞推關(guān)系式得到,,,,并猜想通項公式
第二問中,用數(shù)學歸納法證明(1)中的猜想。
①對n=1,等式成立。
②假設(shè)n=k時,成立,
那么當n=k+1時,
,所以當n=k+1時結(jié)論成立可證。
數(shù)列,滿足
(1),,,并猜想通項公。 …4分
(2)用數(shù)學歸納法證明(1)中的猜想。①對n=1,等式成立。 …5分
②假設(shè)n=k時,成立,
那么當n=k+1時,
, ……9分
所以
所以當n=k+1時結(jié)論成立 ……11分
由①②知,猜想對一切自然數(shù)n均成立
“已知:中,,求證:”。下面寫出了用反證法證明這個命題過程中的四個推理步驟:
(1)所以,這與三角形內(nèi)角和定理相矛盾,;
(2)所以;
(3)假設(shè);
(4)那么,由,得,即
這四個步驟正確的順序應(yīng)是
A.(1)(2)(3)(4) B.(3)(4)(2)(1) C.(3)(4)(1)(2) D.(3)(4)(2)(1)
(07年北京卷理)已知集合,其中,由中的元素構(gòu)成兩個相應(yīng)的集合:
,.
其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.
若對于任意的,總有,則稱集合具有性質(zhì).
(I)檢驗集合與是否具有性質(zhì)并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合和;
(II)對任何具有性質(zhì)的集合,證明:;
(III)判斷和的大小關(guān)系,并證明你的結(jié)論.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com