題目列表(包括答案和解析)
已知函數(shù),數(shù)列的項滿足: ,(1)試求
(2) 猜想數(shù)列的通項,并利用數(shù)學(xué)歸納法證明.
【解析】第一問中,利用遞推關(guān)系,
,
第二問中,由(1)猜想得:然后再用數(shù)學(xué)歸納法分為兩步驟證明即可。
解: (1) ,
, …………….7分
(2)由(1)猜想得:
(數(shù)學(xué)歸納法證明)i) , ,命題成立
ii) 假設(shè)時,成立
則時,
綜合i),ii) : 成立
已知函數(shù),,k為非零實數(shù).
(Ⅰ)設(shè)t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;
(Ⅱ)是否存在正實數(shù)k,都能找到t∈[1,2],使得關(guān)于x的方程f(x)=g(x)在[1,5]上有且僅有一個實數(shù)根,且在[-5,-1]上至多有一個實數(shù)根.若存在,請求出所有k的值的集合;若不存在,請說明理由.
【解析】本試題考查了運(yùn)用導(dǎo)數(shù)來研究函數(shù)的單調(diào)性,并求解參數(shù)的取值范圍。與此同時還能對于方程解的問題,轉(zhuǎn)化為圖像與圖像的交點(diǎn)問題來長處理的數(shù)學(xué)思想的運(yùn)用。
已知函數(shù),(),
(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值
(2)當(dāng)時,若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線
∴,
∴
(2)令,當(dāng)時,
令,得
時,的情況如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為
當(dāng),即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,
當(dāng)且,即時,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為
當(dāng),即a>6時,函數(shù)在區(qū)間內(nèi)單調(diào)遞贈,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因為
所以在區(qū)間上的最大值為。
已知函數(shù),.
(Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)若方程有唯一解,求實數(shù)的值.
【解析】第一問,
當(dāng)0<x<2時,,當(dāng)x>2時,,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須,即
由上得出,當(dāng)時,在上均為增函數(shù)
(Ⅱ)中方程有唯一解有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|||
- |
+ |
||
極小值 |
由于在上,只有一個極小值,的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時,方程有唯一解得到結(jié)論。
(Ⅰ)解:
當(dāng)0<x<2時,,當(dāng)x>2時,,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須,即
由上得出,當(dāng)時,在上均為增函數(shù) ……………6分
(Ⅱ)方程有唯一解有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|||
- |
+ |
||
極小值 |
由于在上,只有一個極小值,的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時,方程有唯一解
已知函數(shù),.
(1)設(shè)是函數(shù)的一個零點(diǎn),求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.
【解析】第一問利用題設(shè)知.因為是函數(shù)的一個零點(diǎn),所以即(
所以
第二問
當(dāng),即()時,
函數(shù)是增函數(shù),
故函數(shù)的單調(diào)遞增區(qū)間是()
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com