聯(lián)立.消去.整理得: 查看更多

 

題目列表(包括答案和解析)

設雙曲線的兩個焦點分別為,離心率為2.

(1)求雙曲線的漸近線方程;

(2)過點能否作出直線,使與雙曲線交于兩點,且,若存在,求出直線方程,若不存在,說明理由.

【解析】(1)根據(jù)離心率先求出a2的值,然后令雙曲線等于右側的1為0,解此方程可得雙曲線的漸近線方程.

(2)設直線l的方程為,然后直線方程與雙曲線方程聯(lián)立,消去y,得到關于x的一元二次方程,利用韋達定理表示此條件,得到關于k的方程,解出k的值,然后驗證判別式是否大于零即可.

 

查看答案和解析>>

已知圓C1:x2+y2+2x-6y+1=0,圓C2:x2+y2-4x+2y-11=0,求兩圓的公共弦所在的直線方程及公共弦長.

活動:學生審題,思考并交流,探討解題的思路,教師及時提示引導,因兩圓的交點坐標同時滿足兩個圓方程,聯(lián)立方程組,消去x2項、y2項,即得兩圓的兩個交點所在的直線方程,利用勾股定理可求出兩圓公共弦長.

查看答案和解析>>

橢圓的左、右焦點分別為,一條直線經(jīng)過點與橢圓交于兩點.

⑴求的周長;

⑵若的傾斜角為,求的面積.

【解析】(1)根據(jù)橢圓的定義的周長等于4a.

(2)設,則,然后直線l的方程與橢圓方程聯(lián)立,消去x,利用韋達定理可求出所求三角形的面積.

 

查看答案和解析>>

設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設點P的坐標為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設點P的坐標為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設點P的坐標為.

由P在橢圓上,有

因為,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1

(1)   求曲線C的方程.

(2)   是否存在正數(shù)m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.

【解析】(1)由題意知曲線C上的點到F(1,0)的距離與到直線x=-1的距離相等.

可確定其軌跡是拋物線,即可求出其方程為y2=4x.

(2)設過點M的直線方程為x=ty+m,然后與拋物線方程聯(lián)立,消去x,利用韋達定理表示出,再證明其小于零即可.

 

查看答案和解析>>


同步練習冊答案