由三垂線定理可知. 查看更多

 

題目列表(包括答案和解析)

已知A,B分別是橢圓C1
x2
a2
+
y2
b2
=1的左、右頂點,P是橢圓上異與A,B的任意一點,Q是雙曲線C2
x2
a2
-
y2
b2
=1上異與A,B的任意一點,a>b>0.
(I)若P(
5
2
,
3
),Q(
5
2
,1),求橢圓Cl的方程;
(Ⅱ)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1•k2+k3•k4為定值;
(Ⅲ)過Q作垂直于x軸的直線l,直線AP,BP分別交 l于M,N,判斷△PMN是否可能為正三角形,并說明理由.

查看答案和解析>>

已知A,B分別是橢圓C1=1的左、右頂點,P是橢圓上異與A,B的任意一點,Q是雙曲線C2=1上異與A,B的任意一點,a>b>0.
(I)若P(),Q(,1),求橢圓Cl的方程;
(Ⅱ)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1•k2+k3•k4為定值;
(Ⅲ)過Q作垂直于x軸的直線l,直線AP,BP分別交 l于M,N,判斷△PMN是否可能為正三角形,并說明理由.

查看答案和解析>>

如圖,將一張矩形的紙對折以后略微展開,豎立在桌面上,說明折痕為什么與桌面垂直.

從圖中可直觀地看出,折痕垂直于對折后的紙與桌面所形成的交線.由直線與平面垂直的判定定理知,折痕與桌面垂直.那么在折痕垂直于紙與桌面的交線未知的情況下,單憑折后的紙與桌面垂直,能否得出折痕與桌面垂直?轉(zhuǎn)化為數(shù)學(xué)語言,即如果兩個相交平面都垂直于第三個平面,那么它們的交線也垂直于第三個平面嗎?下面用不同的方法證明.

如圖,已知平面α⊥平面β,平面α⊥平面γ,且β∩γ=a,β∩α=l,γ∩α=m.

求證:a⊥α.

查看答案和解析>>

在棱長為的正方體中,是線段的中點,.

(1) 求證:^;

(2) 求證://平面;

(3) 求三棱錐的表面積.

【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結(jié)論,第二問中,先判定為平行四邊形,然后,可知結(jié)論成立。

第三問中,是邊長為的正三角形,其面積為,

因為平面,所以,

所以是直角三角形,其面積為

同理的面積為, 面積為.  所以三棱錐的表面積為.

解: (1)證明:根據(jù)正方體的性質(zhì),

因為,

所以,又,所以,

所以^.               ………………4分

(2)證明:連接,因為

所以為平行四邊形,因此

由于是線段的中點,所以,      …………6分

因為,平面,所以∥平面.   ……………8分

(3)是邊長為的正三角形,其面積為

因為平面,所以,

所以是直角三角形,其面積為,

同理的面積為,              ……………………10分

面積為.          所以三棱錐的表面積為

 

查看答案和解析>>


同步練習(xí)冊答案