(2)已知且,當時.求的值. 查看更多

 

題目列表(包括答案和解析)

             (執(zhí)信中學、中山紀念中學、深圳外語)三校聯(lián)考      09.02

一.選擇題:

二.填空題:9.1;            10.15;          11.      

學科網(wǎng)(Zxxk.Com)

13.;          14.;          15..

 

 

 

 

 

 

 

 

 

 

 

 

三.解答題:

16.(1)==                2分

==                           4分

                     6分         

(2)==

==               9分

,得                10分

               11分

, 即時,                  12分

 

17.(1)由已知,的取值為 .                     2分                 

,

                     8分

7

8

9

10

的分布列為:

 

 

 

                                                          9分

 

(2)    11分      

        12分

18.(1)由.且           2分

,                      4分

中,令時,T=,

兩式相減得,      6分

.                   8分

(2),                        9分

,,       10分

=2

=,               13分

                 14分     

19、(Ⅰ)在梯形中,,

學科網(wǎng)(Zxxk.Com)四邊形是等腰梯形,

     2分

平面平面,交線為,

平面              4分

(Ⅱ)解法一、當時,平面,      5分

在梯形中,設,連接,則          6分

,而,             7分

,四邊形是平行四邊形,             8分

平面,平面平面          9分

解法二:當時,平面,                                  

由(Ⅰ)知,以點為原點,所在直線為坐標軸,建立空間直角坐標系,    5分

學科網(wǎng)(Zxxk.Com),,,,

,

平面

平面、共面,

  •  

     

    .,

    ,,                     6分

    從而要使得:成立,

    ,解得                  8分

    時,平面                 9分

    學科網(wǎng)(Zxxk.Com)(Ⅲ)解法一、取中點,中點,連結,

    平面

    ,,又

    是二面角的平面角.        6分

    中,

    ,.           7分

    .               8分

    中,由余弦定理得,               9分

    即二面角的平面角的余弦值為.

    學科網(wǎng)(Zxxk.Com)

     

    建立空間直角坐標系,則,,

    ,,,

    垂足為. 令,

    ,  

    得,,,即   11分

    ,

    二面角的大小就是向量與向量所夾的角.          12分

            13分        

                   

    即二面角的平面角的余弦值為.                    14分

     

    20.(1)設 (均不為),

    ,即                   2分

    ,即                  2分

     得  

    動點的軌跡的方程為              6分

    (2)①由(1)得的軌跡的方程為,,

    設直線的方程為,將其與的方程聯(lián)立,消去.         8分

    的坐標分別為,則,           9分

          10分

    ②解法一:,  即

      又 .     可得        11分

    故三角形的面積,                 12分

    因為恒成立,所以只要解. 即可解得.      14分

     

    解法二:,,(注意到

    又由①有,,

    三角形的面積(以下解法同解法一)

     

    21.(1)函數(shù)的定義域為.               1分

    ;   2分                    

    ,       3分

    則增區(qū)間為,減區(qū)間為.                        4分

    (2)令,由(1)知

    同步練習冊答案