A.根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計算得出k2≥6.635,而P(k2≥6.635)≈0.01,則有99%的把握認為兩個分類變量有關系B.在線性回歸分析中.相關系數(shù)為r.|r|越接近于1.相關程度越大,|r|越小.相關程度越小C.在回歸分析中.相關指數(shù)R2越大.說明殘差平方和越小.回歸效果越好 查看更多

 

題目列表(包括答案和解析)

以下結論不正確的是                      (     )

    A.根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計算得出K2≥6.635, 而P(K2≥6.635)≈0.01,則有99%的把握認為兩個分類變量有關系

    B.在線性回歸分析中,相關系數(shù)為r,|r|越接近于1,相關程度越大;|r|

越小,相關程度越小

    C.在回歸分析中,相關指數(shù)R2越大,說明殘差平方和越小,回歸效果越好

    D.在回歸直線中,變量x=200時,變量y的值一定是15

 

查看答案和解析>>

以下結論不正確的是( )
A.根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計算得出K2≥6.635,而P(K2≥6.635)≈0.01,則有99%的把握認為兩個分類變量有關系
B.K2的值越大,兩個事件的相關性就越大
C.在回歸分析中,相關指數(shù)R2越大,說明殘差平方和越小,回歸效果越好
D.在回歸直線y=0.5x-85中,變量x=200時,變量y的值一定是15

查看答案和解析>>

以下結論不正確的是( )
A.根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計算得出K2≥6.635,而P(K2≥6.635)≈0.01,則有99%的把握認為兩個分類變量有關系
B.K2的值越大,兩個事件的相關性就越大
C.在回歸分析中,相關指數(shù)R2越大,說明殘差平方和越小,回歸效果越好
D.在回歸直線y=0.5x-85中,變量x=200時,變量y的值一定是15

查看答案和解析>>

以下結論不正確的是                                        (    )

A.根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計算得出K2≥6.635, 而P(K2≥6.635)≈0.01,則有99%的把握認為兩個分類變量有關系
B.在線性回歸分析中,相關系數(shù)為r,|r|越接近于1,相關程度越大;|r|
越小,相關程度越小
C.在回歸分析中,相關指數(shù)R2越大,說明殘差平方和越小,回歸效果越好
D.在回歸直線中,變量x=200時,變量y的值一定是15

查看答案和解析>>

以下結論不正確的是( )

A.根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計算得出K2≥6.635, 而P(K2≥6.635)≈0.01,則有99%
的把握認為兩個分類變量有關系
B.在線性回歸分析中,相關系數(shù)為r,|r|越接近于1,相關程度越大;|r|越小,相關程度越小
C.在回歸分析中,相關指數(shù)R2越大,說明殘差平方和越小,回歸效果越好
D.在回歸直線中,變量x=200時,變量y的值一定是15

查看答案和解析>>

一、選擇題:(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

D

A

A

D

B

B

C

 

二、填空題(每小題4分,共16分)

13.90°   14. m<且m≠-    15. 12      16.

三、解答題

17.(12分)           (3分)

           sinsin+coscos=                  (6分)

           cos(-)=                              (8分)

                             (10分)

         ∴sin(-)=-             (12分)

18.(12分)

  (1)略              (6分)

  (2)不垂直          (12分)

方法一:求出EF=,BE=,取EC中點G,BG=2,GF=1,BF=

∴△BEF是等腰三角形

∴EF與BF不垂直

∴EF與平面BDC不垂直。

方法二:向量法,如圖建立坐標系

E(0,0,0),F(xiàn)(1,1,0),B(0,1,2),C(0,2,0)

        =(1,1,0),=(0,1,2)

       

∴EF與BC不垂直   ∴EF與平面BDC不垂直。

  19.(12分)

  (1)方法一:直線亙這定點P(0,1)           (2分)

而P(0,1)在橢圓C內           (3分)

           ∴與C恒有兩個不同交點        (4分)

  方法二:由     (2分)

          △=(2m)2+4×3×(4+m2)>0                    (3分)

          ∴與C恒有兩個不同交點                   (4分)

  (2)方法一:設A(x1,y1),B(x2,y2),M(x,y)則

                   (6分)

           x1+x2+=0(∵x1≠x2)

             x1+x2=2x,y1+y2=2y,k=m             (8分)

          ∴x+m=0                            (9分)

          又y=mx+1                            (10分)

        消去m得4x2+(y-)2=                (12分)

        ∴M點軌跡方程為4x2+y2-y=0(y≠0)

方法二:由(4+m2)x2+2mx-3=0

                         (10分)

         消去m得4x2+y2-y=0(y≠0)    

        ∴M點軌跡方程為4x2+y2-y=0(y≠0)          (12分)

20.(14分)

(理)(1)P1=,P2=,P3=

(2)Pn+2-Pn+1=

   ∴

   ∴{Pn+2-Pn+1}是公比為-的等比數(shù)列                       (10分)

(3) Pn+2-Pn+1=(P2-P1)?(-)n-1=(-)n+1

   P2-P1=(-)2,P3-P2=(-)3,……,Pn-Pn-1=(-)n

  相加:Pn-P1=(-)2+(-)3+…+(-)n=[1-(-)n-1]

  ∴Pn=                                         (14分)

(文)(1)an=       (4分)

b1=a1=2,b2=,q=

bn=b1qn-1=2?()n-1                                  (7分)

(2)Cn=                       (8分)

  Tn=1+3?41+5?42+……+(2n-1)?4n-1

 4Tn=4+3?42+5?43+……+(2n-1)?4n

-3Tn=1+2?41+2?42+……+2?4n-1 -(2n-1)?4n

=-[(6n-5)4n+5]

∴Tn=[(6n-5)4n+5]

21.(14分)

(理)(1)f′(x)=4+2ax-2x2,由題意f′(x)≥0在[-1,1]上恒成立  (2分)

∴A=[-1,1]                            (5分)

(2)方程f(x)=2x+x3可化為x(x2-ax-2)=0

  ∵x1≠x2≠0, ∴x1,x2是x2-ax-2=0兩根          (7分)

  △=a2+8>0,x1+x2=a,x1x2=2

  ∴|x1-x2|=

  ∵-1≤a≤1    ∴|x1-x2|最大值是       (10分)

  ∴m2+tm+1≥3在t∈[-1,1]上恒成立

  令g(t)=mt+t2-2

  ∴

m≥2或m≤-2                                 (14分)

故存在m值,其取值范圍為(-∞,-2]∪[2,+∞)

(文)(1)f′(x)=3x2+b

    由已知f′(x)在[-1,1]上恒成立       (3分)

 ∴b≥-3x2在[-1,1] 上恒成立

 ∵-3x2在[-1,1]上最大值為0            (6分)

 ∴b≥0                                 (7分)

(2)f(x)在[-1,1]上最大值為f(1)=1+b       (9分)

 ∴b2-tb+1≥1+b                          (10分)

   即b2-(t+1)b≥0恒成立,由b≥0得

 ∴b-(t+1)≥0,t+1≤b恒成立

 ∴t≤-1                                 (14分)

四、選考題:(10分)

A.(1)△ABE≌△ACD     (5分)

   (2)△ABC∽△BEC    

     ∴           (8分)

     ∴AE=            (10分)

B.P(2,)          P()        (3分)

          x-y+2=0      (7分)

   D=                 (10分)

C.設a=cos,b=sin,c=cos,d=sin          (4分)

  |ac+bd|=|coscos+sinsin|              (6分)

         =|cos(-)|≤1                      (10分)

方法二:只需證(ac+bd)2≤(a2+b2)(c2+d2)         (6分)

        即證:2abcd≤a2d2+b2c2                 (8分)

        即證:(ad-bc)2≥0

       上式顯然成立

       ∴原不等式成立。                       (10分)

 


同步練習冊答案