已知向量在區(qū)間上是增函數(shù).則實(shí)數(shù)的取值范圍是 ▲ . 查看更多

 

題目列表(包括答案和解析)

已知向量,若函數(shù)在區(qū)間上是增函數(shù),則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

已知向量,若函數(shù)在區(qū)間上是增函數(shù),則實(shí)數(shù)的取值范圍是_________.

 

查看答案和解析>>

已知向量,,若函數(shù)在區(qū)間上是增函數(shù),則實(shí)數(shù)的取值范圍是                                          (   )

(A)    (B)      (C)     (C)

 

查看答案和解析>>

已知向量,,若函數(shù)在區(qū)間上是增函數(shù),則實(shí)數(shù)的取值范圍是                                         (  )
(A)   (B)     (C)    (C)

查看答案和解析>>

已知向量,,若函數(shù)在區(qū)間上是增函數(shù),則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

1-10.CDBBA   CACBD

11. 12. ①③④   13.-2或1  14. 、  15.2  16.  17..

18.

解:(1)由已知            7分

(2)由                                                                   10分

由余弦定理得                          14分

 

19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

(2)解:過C作CE⊥AB于E,連接PE,

∵PA⊥底面ABCD,∴CE⊥面PAB,

∴直線PC與平面PAB所成的角為,                                                    10分

∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

中求得CE=,∴.                                                  14分

 

20.解:(1)由①,得②,

②-①得:.                              4分

(2)由求得.          7分

,   11分

.                                                                 14分

 

21.解:

(1)由得c=1                                                                                     1分

,                                                         4分

        <abbr id="k4iee"></abbr>
        <menu id="k4iee"><acronym id="k4iee"></acronym></menu>

        市一次模文數(shù)參答―1(共2頁)

                                                                                                5分

        (2),時取得極值.由,.                                                                                          8分

        ,,∴當(dāng)時,,

        上遞減.                                                                                       12分

        ∴函數(shù)的零點(diǎn)有且僅有1個     15分

         

        22.解:(1) 設(shè),由已知,

        ,                                        2分

        設(shè)直線PB與圓M切于點(diǎn)A,

        ,

                                                         6分

        (2) 點(diǎn) B(0,t),點(diǎn),                                                                  7分

        進(jìn)一步可得兩條切線方程為:

        ,                                   9分

        ,,

        ,                                          13分

        ,又時,

        面積的最小值為                                                                            15分

         

         


        同步練習(xí)冊答案
          <rt id="k4iee"><noscript id="k4iee"></noscript></rt>
            <ul id="k4iee"></ul>