(C) (D) 查看更多

 

題目列表(包括答案和解析)

3、(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},則P∩M=( 。

查看答案和解析>>

(中三角函數(shù)的奇偶性及周期)下列函數(shù)中是奇函數(shù),且最小正周期是π的函數(shù)是( 。
A、y=tan2x
B、y=|sinx|
C、y=sin(
π
2
+2x)
D、y=cos(
2
-2x)

查看答案和解析>>

(易向量的概念)下列命題中,正確的是( 。
A、若a∥b,則a與b的方向相同或相反B、若a∥b,b∥c,則a∥cC、若兩個單位向量互相平行,則這兩個單位向量相等D、若a=b,b=c,則a=c

查看答案和解析>>

(文)設(shè)a∈R,則a>1是
1
a
<1 的( 。
A、必要但不充分條件
B、充分但不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

1、c≠0是方程 ax2+y2=c表示橢圓或雙曲線的( 。

查看答案和解析>>

一.選擇題 (本大題共10小題,每題5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.A;    7.B;    8.D;    9.B;     10.D;

二.填空題 (本大題共7小題,每題4分,共28分)

11.;  12.,;   14.,;  15.;  16.;  17.

三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.解:(1)因為,所以,…………3分

    得,

    所以…………………………………3分

(2)由,…………………………………2分

    ……………………2分

    ………………………………4分

19.解:(1)…………………2分

      當(dāng)時,…………………2分

     ∴,即

    ∴是公比為3的等比數(shù)列…………………2分

(2)由(1)得:…………………2分

設(shè)的公差為), ∵,∴………………2分

依題意有,,

,得,或(舍去)………………2分

………………2分

 

20.解(1)

由三視圖知:側(cè)棱,,

………………2分

,又,∴   ①………………2分

為正方形,∴,又

 ②………………2分

由①②知平面………………2分

(2)取的中點(diǎn),連結(jié),由題意知,∴

由三視圖知:側(cè)棱,∴平面平面

平面

就是與面所成角的平面角………………3分

,。故,又正方形

中,∴,∴

………………3分

綜上知與面所成角的大小的余弦值為

21.解(1)當(dāng),時,,………………1分

………………2分

∴當(dāng),此時為減函數(shù),………………1分

當(dāng),些時為增函數(shù)………………1分

,

當(dāng)時,求函數(shù)的最大值………………2分

(2)………………1分

①當(dāng)時,在,

上為減函數(shù),∴,則

………………3分

②當(dāng)時,

上為減函數(shù),則

上為增函數(shù),在上為減函數(shù),在上為增函數(shù),則

,∴………………3分

綜上可知,的取值范圍為………………1分

 

22.(1)記A點(diǎn)到準(zhǔn)線距離為,直線的傾斜角為

由拋物線的定義知,………………………2分

,

………………………3分

(2)設(shè),

,………………………2分

,同理……………………2分

,…………………………2分

即:,

    ∴,…………………………2分

,得,

得,

的取值范圍為…………………………2分

 

命題人

呂峰波(嘉興)  王書朝(嘉善)  王云林(平湖)

胡水林(海鹽)  顧貫石(海寧)  張曉東(桐鄉(xiāng))

     吳明華、張啟源、徐連根、洗順良、李富強(qiáng)、吳林華

 

 

 


同步練習(xí)冊答案