24.已知.如圖..相交于點.∥.=..分別是.中點.求證:四邊形是平行四邊形. 查看更多

 

題目列表(包括答案和解析)

已知,如圖,、相交于點,,=,、分別是中點。求證:四邊形是平行四邊形。

查看答案和解析>>

已知:如圖,⊙、⊙相交于A、B兩點,直線PQ分別與這兩個圓相切于P、Q,直線TD與⊙切于T,和⊙相交于點M和D,且點M是線段TD的中點,直線AB分別與直線PQ和TD相交于點S和C,求

查看答案和解析>>

精英家教網(wǎng)已知,如圖,∠XOY=90°,點A、B分別在射線OX、OY上移動,BE是∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C,試問∠ACB的大小是否發(fā)生變化?如果保持不變,請給出證明;如果隨點A、B移動發(fā)生變化,請求出變化范圍.

查看答案和解析>>

11、已知,如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于A、B兩點,A點坐標(biāo)為(2,1),分別以A、B為圓心的圓與x軸相切,則圖中兩個陰影部分面積的和為
π

查看答案和解析>>

精英家教網(wǎng)已知,如圖,AB、CD相交于點O,AC∥DB,AO=BO,E、F分別是OC、OD中點.
求證:四邊形AFBE是平行四邊形.

查看答案和解析>>

 

一、1.A  2. C  3. D  4. D  5. B  6.D  7. A  8. A  9. B  10. B  11. D  12. B  13. C  14. D  15. A

二、16.±3  17. 18.  19.矩形、圓  20.2.5┩  21.15π

三、22.解原式=  

23、解設(shè)原方程可化為。解得    

當(dāng)  解得    解得 

經(jīng)檢驗    是原方程的根。   

24、∵AC∥BD  ∴∠C=∠D   ∠CAO=∠DBO   AO=BO  ∴△AOC≌△BOD 

∴CO=DO  ∵E、F分別是OC、OD的中點  ∴OF=OD=OC=OE 。

由AO=BO、EO=FO ∴四邊表AFBE是平等四邊形。

25、解由圖象可行的反比例函數(shù)設(shè)經(jīng)過A(2,18)

∴函數(shù)表達(dá)式為:=。 

26、(1)設(shè)該船廠運輸x年后開始盈利,72x-(120+40x)?0,x?,

因而該船運輸4年后開始盈利。(2)(萬元)。 

四、27、(1)不合格  (2)80名 

(3)合理,理由,利用樣本的優(yōu)秀人數(shù)來詁計總體的優(yōu)秀人數(shù)。 

五、28、作AD⊥BC交BC延長線于D,設(shè)AD=,在Rt△ACD中,∠CAD=30°

∴CD=。在Rt△ABD中,∠ABD=30°∴BD=   

∵BC=8      ∴有觸礁危險。 

六29、解:(1)△。證明:

(2)理由:。

,即。 

七、30.解(1)等腰直角三角形   (2)當(dāng)J 等邊三角形。

證明;連結(jié)是⊙的切線

 

  又  是等邊三角形。(3)等腰三角形。 

八 31.(1)作圖略   (2)  

九 32.(1)1140≤45x+75(20-x)≤1170 (2)11≤x≤12

∵x為正整數(shù)∴當(dāng)x=11時,20-11=9當(dāng)=12時20-12=8

∴生產(chǎn)甲產(chǎn)品11件,生產(chǎn)乙產(chǎn)品9件或 生產(chǎn)甲產(chǎn)品12件,生產(chǎn)乙產(chǎn)品8件。

十 33.解:(1)∵DQ//AP,∴當(dāng)AP=DQ時,四邊形APQD是平行四邊形。

此時,3t=8-t。解得t=2(s)。即當(dāng)t為2s時,四邊形APQD是平行四邊形。

(2)∵⊙P和⊙Q的半徑都是2cm,∴當(dāng)PQ=4cm時,⊙P和⊙Q外切。

而當(dāng)PQ=4cm時,如果PQ//AD,那么四邊形APQD是平行四邊形。

①當(dāng) 四邊形APQD是平行四邊形時,由(1)得t=2(s)。

② 當(dāng) 四邊形APQD是等腰梯形時,∠A=∠APQ。

∵在等腰梯形ABCD中,∠A=∠B,∴∠APQ=∠B!郟Q//BC。

∴四邊形PBCQ平行四邊形 。此時,CQ=PB!鄑=12-3t。解得t3(s)。

綜上,當(dāng)t為2s或3s時,⊙P和⊙Q相切。             

 

 


同步練習(xí)冊答案