題目列表(包括答案和解析)
已知中,內(nèi)角的對(duì)邊的邊長分別為,且
(I)求角的大小;
(II)若求的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
第二問,
三角函數(shù)的性質(zhì)運(yùn)用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,,則當(dāng) ,即時(shí),y的最小值為.
已知在中,,,,解這個(gè)三角形;
【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:,然后又
又再又得到c。
解:由正弦定理得到:
又 ……4分
又 ……8分
又
給出問題:已知△ABC滿足a·cosA=b·cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
故△ABC事直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請(qǐng)問:該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果________.
給出問題:已知ΔABC滿足a·cosA=b·cosB,試判斷ΔABC的形狀,某學(xué)生的解答如下:
故ΔABC事直角三角形.
(ii)設(shè)ΔABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于
故ΔABC是等腰三角形.
綜上可知,ΔABC是等腰直角三角形.
請(qǐng)問:該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果________.
給出問題:已知滿足,試判定的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價(jià)于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請(qǐng)問:該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果. .
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com