已知函數(shù)的單調(diào)減區(qū)間為(0.4) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080512213268898492/SYS201308051222069045733946_ST.files/image002.png">,部分對應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。

0

下列關(guān)于函數(shù)的命題:

①函數(shù)上是減函數(shù);②如果當(dāng)時(shí),最大值是,那么的最大值為;③函數(shù)個(gè)零點(diǎn),則;④已知的一個(gè)單調(diào)遞減區(qū)間,則的最大值為。

其中真命題的個(gè)數(shù)是(           )

A、4個(gè)    B、3個(gè)  C、2個(gè)  D、1個(gè)

 

查看答案和解析>>

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/aa/c/1sdp04.png" style="vertical-align:middle;" />,部分對應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。



0










下列關(guān)于函數(shù)的命題:
①函數(shù)上是減函數(shù);②如果當(dāng)時(shí),最大值是,那么的最大值為;③函數(shù)個(gè)零點(diǎn),則;④已知的一個(gè)單調(diào)遞減區(qū)間,則的最大值為。
其中真命題的個(gè)數(shù)是(           )
A、4個(gè)    B、3個(gè)  C、2個(gè)  D、1個(gè)

查看答案和解析>>

已知函數(shù)f(x)=
3
sin(ωx+φ)-cos(ωx+φ)
(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
π
2

(Ⅰ)求f(
π
8
)
的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

已知函數(shù)f(x)=sin(ωx-
4
)
(ω>0),f(
8
)+f(
8
)=0
,且f(x)在區(qū)間(
8
8
)
單調(diào)遞減,則ω的值為(  )
A、2
B、
6
7
C、2或
6
7
D、
8
7
k+
6
7
(k=0,1,2,…)

查看答案和解析>>

已知函數(shù)f(x)=2acos2x+bsinxcosx-
3
2
,且f(0)=
3
2
,f(
π
4
)=
1
2

(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)函數(shù)f(x)的圖象經(jīng)過怎樣的平移才能使其對應(yīng)的函數(shù)成為奇函數(shù)?

查看答案和解析>>

 

一、選擇題:

1―6DABADD    7―12DCABBB

二、填空題:

13.-10

14.

15.4

16.①②⑤

三、解答題:

17.(本題滿分10分)

       解:(I)由向量

20090325

       又

       則…………4分

   (II)由余弦定理得

      

       所以時(shí)等號成立…………9分

       所以…………10分

18.(本小題滿分12分)

       解:(I)解:由已知條件得

       …………2分

       即…………6分

       答:

   (II)解:設(shè)至少有兩量車被堵的事件為A…………7分

       則…………12分

       答:至少有兩量車被堵的概率為

19.(本題滿分12分)

       解:(法一)

   (I)DF//BC,

      

       平面ACC1A1

       …………2分

      

…………4分

   (II)

       點(diǎn)B1到平面DEF的距離等于點(diǎn)C1到平面DEF的距離

      

      

       設(shè)就是點(diǎn)C1到平面DEF的距離…………6分

       由題設(shè)計(jì)算,得…………8分

   (III)作于M,連接EM,因?yàn)?sub>平面ADF,

       所以為所求二面角的平面角。

       則

       則M為AC中點(diǎn),即M,D重合,…………10分

       則,所以FD與BC平行,

       所以F為AB中點(diǎn),即…………12分

   (法二)解:以C點(diǎn)為坐標(biāo)原點(diǎn),CA所在直線為軸,CB所在直線為軸,CC1所在直線為z軸建立空間直角坐標(biāo)系…………1分

   (1)由

<menuitem id="iusrx"></menuitem>

            

             …………4分

         (II)

            

             又…………6分

             …………8分

         (III)設(shè),平面DEF的法向量

             …………10分

            

             即F為線段AB的中點(diǎn),

             …………12分

       

       

       

       

       

      20.(本題滿分12分)

             解:(I)由

            

             …………6分

         (II)由

             得

            

             是等差數(shù)列;…………10分

            

            

             …………12分

      21.(本題滿分12分)

             解:(I)…………2分

             又…………4分

         (II)

            

             且

             …………8分

            

             …………12分

      22.(本題滿分12分)

             解:(1)A1(-1,0),A2(1,0),F(xiàn)1(-2,0),F(xiàn)2(2,0)

            

            

             …………4分

         (II)設(shè)

             直線PF1與雙曲線交于

             直線PF2與雙曲線交于

            

             令

            

             …………6分

            

             而

      * 直線PF1與雙曲線交于兩支上的兩點(diǎn),

      同理直線PF2與雙曲線交于兩支上的兩點(diǎn)

             則…………8分

            

             …………10分

             解得

            

       


      同步練習(xí)冊答案