(Ⅱ)若為上一點(diǎn).且.求二面角的大小. 查看更多

 

題目列表(包括答案和解析)

(2008•青浦區(qū)一模)在平面直角坐標(biāo)系xoy中,已知圓C的圓心在第二象限,半徑為2
2
且與直線y=x相切于原點(diǎn)O.橢圓
x2
a2
+
y2
9
=1
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)圓C上是否存在點(diǎn)Q,使O、Q關(guān)于直線CF(C為圓心,F(xiàn)為橢圓右焦點(diǎn))對(duì)稱,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2012•朝陽(yáng)區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=
3
,EF=1
,BC=
13
,且M是BD的中點(diǎn).
(Ⅰ)求證:EM∥平面ADF;
(Ⅱ)求二面角D-AF-B的大;
(Ⅲ)在線段EB上是否存在一點(diǎn)P,使得CP與AF所成的角為30°?若存在,求出BP的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

精英家教網(wǎng)如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D′′與D′重合于點(diǎn)D1.設(shè)直線l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E-AC-D1的大小為θ,若
π
4
≤θ≤
π
3
,求線段BE長(zhǎng)的取值范圍;
(Ⅱ)在線段D1E上存在點(diǎn)P,使平面PA1C1∥平面EAC,求
D1P
PE
與BE之間滿足的關(guān)系式,并證明:當(dāng)0<BE<a時(shí),恒有
D1P
PE
<1.

查看答案和解析>>


如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線過(guò)點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面
(2)設(shè)二面角的平面角為,若,求線段長(zhǎng)的取值范圍。

查看答案和解析>>

 

如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線過(guò)點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面;

(2)設(shè)二面角的平面角為,若,求線段長(zhǎng)的取值范圍。

 

查看答案和解析>>

評(píng)分說(shuō)明:

1.       第一題選擇題,選對(duì)得分,不選、錯(cuò)選或多選一律得0分.

2.       第二題填空題,不給中間分.

3.       解答與證明題,本答案給出了一種或幾種解法供參考.如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分參考制定相應(yīng)的評(píng)分細(xì)則.

4.       對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后續(xù)部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后續(xù)部分的給分,但不得超過(guò)該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后續(xù)部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

5.       解答右側(cè)所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

6.       只給整數(shù)分?jǐn)?shù).

 

一、選擇題

題號(hào)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

答案

C

B

B

D

A

A

C

B

A

C

D

B

 

二、填空題

題號(hào)

(13)

(14)

(15)

(16)

答案

25

-30

 

三、解答題

(17)解:(Ⅰ)∵//  ∴………………………1分

              ∴.  即. …………………………3分

              又∵為銳角,∴.  …………………………………………4分

              ∴,∴. …………………………………………………5分

         (Ⅱ)由余弦定理,解得

               . ………………………………………………………………………8分

               當(dāng)時(shí),;當(dāng)時(shí),

                                              ……………………………………10分

(18)解:(Ⅰ)∵隨意抽取4件產(chǎn)品檢查是隨機(jī)事件,而第一天有9件正品.

               ∴第一天通過(guò)檢查的概率為. ……………………………5分

         (Ⅱ)同(Ⅰ),第二天通過(guò)檢查的概率為. …………………9分

               因第一、第二天是否通過(guò)檢查相互獨(dú)立, ……………………………10分

               所以,兩天全部通過(guò)檢查的概率為. …………12分

(19)解:(Ⅰ)∵為常數(shù),∴. ………………2分

               ∴.

               又成等比數(shù)列,∴,解得.…4分

               當(dāng)時(shí),不合題意,舍去. ∴.  …………………6分

         (Ⅱ)由(Ⅰ)知,. ………………………………………………8分

               ∴ …………10分

               ∴

   …………………………………………12分

(20)解法一:

     (Ⅰ)取的中點(diǎn),連,則,

           ∴或其補(bǔ)角是異面直線所成的角. ……………………2分

           設(shè),則,

           .

           ∴. ………………………………4分

           ∵在中,. ……5分

           ∴異面直線所成的角為. ……………………………6分

     (Ⅱ)連結(jié),設(shè)的中點(diǎn),過(guò)點(diǎn),連結(jié),則

           .又∵平面平面

          ∴平面. ………………………………………………………8分

          而  ∴

          ∴是二面角的平面角. …………………………………9分

          由==,得.……………10分

          即二面角

          ∴所求二面角. ………………………………12分

解法二:

(Ⅰ)如圖分別以、、所在的直線為軸、軸、軸建立空間直角坐標(biāo)

. ……………………………………………………………………1分

      設(shè),則、、

      、.  ………………………………………………………2分

      ∴,

      ∴. ………………………5分

      ∴異面直線所成的角為.  ………………………………………6分

(Ⅱ)由題意知點(diǎn),設(shè)平面的一個(gè)法向量為

, ∵,

,取,得. ………………8分

易知平面的一個(gè)法向量,

      ∴.  …………………………………………11分

      ∴二面角的大小為.  …………………………12分

(21)解:(Ⅰ),  ………………………………………………2分

               依題意,即解得

               ∴ ……………………………………………4分

         (Ⅱ)由(Ⅰ)知,曲線有兩個(gè)不同的

交點(diǎn),即上有兩個(gè)不同的實(shí)數(shù)解…5分

設(shè),則, ………7分

0的

當(dāng)時(shí),于是上遞增;

當(dāng)時(shí),于是上遞減. ………………9分

依題意有. …………………11分

∴實(shí)數(shù)的取值范圍是. …………………………………12分

(22)解:(Ⅰ)設(shè)點(diǎn),由.  …………2分

              由,得,即.  …………… 4分

              又點(diǎn)軸的正半軸上,∴.故點(diǎn)的軌跡的方程是

. …………………………………………………………6分

(Ⅱ)由題意可知為拋物線的焦點(diǎn),且為過(guò)焦點(diǎn)的直線與拋物

的兩個(gè)交點(diǎn),所以直線的斜率不為. ……………………………………7分

      當(dāng)直線斜率不存在時(shí),得,不合題意; ……8分

      當(dāng)直線斜率存在且不為時(shí),設(shè),代入

      ,

      則,解得. …………10分

      代入原方程得,由于,所以,由,

      得,∴. ……………………………………………………12分

 

 

 

 

 


同步練習(xí)冊(cè)答案