③若則的圖象關(guān)于原點(diǎn)對(duì)稱(chēng). 查看更多

 

題目列表(包括答案和解析)

若函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則f()=( )
A.
B.-
C.1
D.一1

查看答案和解析>>

若函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則f()=( )
A.
B.-
C.1
D.一1

查看答案和解析>>

若函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則f()=( )
A.
B.-
C.1
D.一1

查看答案和解析>>

若函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則f()=( )
A.
B.-
C.1
D.一1

查看答案和解析>>

若函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則實(shí)數(shù)θ的最小正值為   

查看答案和解析>>

 

說(shuō)明:

      一、本解答指出了每題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)則.

    二、對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過(guò)該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

    三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

    四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,滿(mǎn)分50分.

1. A        2. C        3. C        4.C     5.D     6.D     7. B        8. D        9. B        10. C

二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,滿(mǎn)分20分.

11.  12.38            12.  5           13.  3        14.     15. ②③

三、解答題:本大題共6小題,共80分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

16. 本小題主要考查正弦定理、三角函數(shù)的倍角公式、兩角和公式等基本知識(shí),考

查學(xué)生的運(yùn)算求解能力. 滿(mǎn)分13分.

解:(Ⅰ)由,知                   ………………………(2分)

,得,

          ,                      ………………………(5分)

                                    ………………………(6分)

(Ⅱ) 由(Ⅰ)知,

          

                   ………………………………(9分)

        

         當(dāng),即時(shí),取得最大值為.   ……………(13分)                               

17. 本題主要考查線(xiàn)線(xiàn)、線(xiàn)面、面面位置關(guān)系,線(xiàn)面角等基本知識(shí),考查空間想像能力,運(yùn)算求解能力和推理論證能力. 滿(mǎn)分13分.

解:(Ⅰ)證明:如圖,取中點(diǎn),連結(jié),;

,,

,,

,…………(3分)

四邊形為平行四邊形,

,

平面,平面,

∥平面.                          ………………………(6分)

(Ⅱ)依題意知平面平面,,

平面,得  

,.

如圖,以為原點(diǎn),建立空間直角坐標(biāo)系-xyz,

,可得、、,

.

設(shè)平面的一個(gè)法向量為

   得

解得,.             ………………………(9分)

設(shè)線(xiàn)段上存在一點(diǎn),其中,則

,

依題意:,即,

可得,解得(舍去).  

             所以上存在一點(diǎn).   …………(13分)

18.本題主要考查函數(shù)與導(dǎo)數(shù)等基本知識(shí),考查運(yùn)用數(shù)學(xué)知識(shí)分析問(wèn)題與解決問(wèn)題的能力,

考查應(yīng)用意識(shí). 滿(mǎn)分13分.

    解:(Ⅰ)依題意,

銷(xiāo)售價(jià)提高后為6000(1+)元/臺(tái),月銷(xiāo)售量為臺(tái)……………(2分)

               ……………………(4分)

.       ……………………(6分)

   (Ⅱ)

,得

解得舍去).                      ……………………(9分)

當(dāng) 當(dāng)

當(dāng)時(shí),取得最大值.

此時(shí)銷(xiāo)售價(jià)為元.

答:筆記本電腦的銷(xiāo)售價(jià)為9000元時(shí),電腦企業(yè)的月利潤(rùn)最大.…………………(13分)

19.本題主要考查直線(xiàn)與橢圓的位置關(guān)系、不等式的解法等基本知識(shí),考查運(yùn)算求解能力和分析問(wèn)題、解決問(wèn)題的能力. 滿(mǎn)分13分

解:(Ⅰ)因?yàn)闄E圓的一個(gè)焦點(diǎn)是(1,0),所以半焦距=1.

因?yàn)闄E圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.

所以,解得

所以橢圓的標(biāo)準(zhǔn)方程為.  …(4分)                

(Ⅱ)(i)設(shè)直線(xiàn)聯(lián)立并消去得:.

,

,

.  ……………(5分)

A關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,得,

根據(jù)題設(shè)條件設(shè)定點(diǎn)為,0),

,即.

所以

即定點(diǎn)(1 , 0).                 ……………………………………(8分)

(ii)由(i)中判別式,解得.    

可知直線(xiàn)過(guò)定點(diǎn) (1,0).

所以          ……………(10分)

,  令

,得,當(dāng)時(shí),.

上為增函數(shù).

所以 ,

.

故△OA1B的面積取值范圍是.                     ……………(13分)

20. 本題主要考查函數(shù)的單調(diào)性、等差數(shù)列、不等式等基本知識(shí),考查運(yùn)用合理的推理證明解

決問(wèn)題的方法,考查分類(lèi)與整合及化歸與轉(zhuǎn)化等數(shù)學(xué)思想. 滿(mǎn)分14分.

解:(Ⅰ)因?yàn)?sub>,

所以.           ………………(1分)

(i)當(dāng)時(shí),.

(ii)當(dāng)時(shí),由,得到,知在.

(iii)當(dāng)時(shí),由,得到,知在.

綜上,當(dāng)時(shí),遞增區(qū)間為;當(dāng)時(shí), 遞增區(qū)間為.                   ………………………………………(4分)

(Ⅱ)(i)因?yàn)?sub>

所以,即,

,即.     ……………………………………(6分)

因?yàn)?sub>,

當(dāng)時(shí),,

當(dāng)時(shí),,

所以.                  …………………………(8分)

又因?yàn)?sub>,

所以令,則

得到矛盾,所以不在數(shù)列中.    ………(9分)

(ii)充分性:若存在整數(shù),使.

設(shè)為數(shù)列中不同的兩項(xiàng),則

.

,所以.

是數(shù)列的第項(xiàng).           ……………………(10分)

必要性:若數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng),

,(為互不相同的正整數(shù))

,令,

得到 ,

所以,令整數(shù),所以. ……(11 分)

下證整數(shù)

若設(shè)整數(shù).令,

由題設(shè)取使

,所以

相矛盾,所以.

綜上, 數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng)的充要條件是存在整數(shù),使.                          ……………………(14分)

21. (1)本題主要考查矩陣乘法、逆矩陣與變換等基本知識(shí),考查運(yùn)算求解能力, 滿(mǎn)分7分.

解: ,即 ,

所以  得              ……………………(4分)

     即M=   , .

=1 ,  .           …………………(7分)

(2)本題主要考查圓極坐標(biāo)方程和直線(xiàn)參數(shù)方程等基本知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想. 滿(mǎn)分7分.

解:曲線(xiàn)的極坐標(biāo)方程可化為,

其直角坐標(biāo)方程為,即.      ……………(2分)

直線(xiàn)的方程為.

所以,圓心到直線(xiàn)的距離          ……………………(5分)

所以,的最小值為.                  …………………………(7分)

(3)本題主要考查柯西不等式與不等式解法等基本知識(shí),考查化歸與轉(zhuǎn)化思想. 滿(mǎn)分7分.

解:由柯西不等式:

. …………(3分)

因?yàn)?sub>

所以,即

因?yàn)?sub>的最大值是7,所以,得,

當(dāng)時(shí),取最大值,

所以.                          ………………………………………(7分)

 

 


同步練習(xí)冊(cè)答案