,由(1)知.所以 且 查看更多

 

題目列表(包括答案和解析)

由共線向量定理可以得到若=λ(λ∈R),則M、A、B三點共線.利用所學(xué)知識探討:對任意一點O,且=x+y,(x、y∈R),若P、A、B三點共線,那么,x、y應(yīng)具備什么條件?

查看答案和解析>>

精英家教網(wǎng)已知矩形ABCD中,AB=2
2
,BC=1.以AB的中點O為原點建立如圖所示的平面直角坐標(biāo)系xoy.
(1)求以A,B為焦點,且過C,D兩點的橢圓的標(biāo)準(zhǔn)方程;
(2)過點P(0,2)的直線l與(1)中的橢圓交于M,N兩點,是否存在直線l,使得以線段MN為直徑的圓恰好過原點?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應(yīng)的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
進一步思考問題:若上述問題中直線l1:x=-
a2
c
、點F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷
 
 (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

精英家教網(wǎng)已知橢圓C的方程是
x2
a2
+
y2
b2
=1
(a>b>0),點A,B分別是橢圓的長軸的左、右端點,
左焦點坐標(biāo)為(-4,0),且過點P 
3
2
,  
5
2
3
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知F是橢圓C的右焦點,以AF為直徑的圓記為圓M,試問:過P點能否引圓M的切線,若能,求出這條切線與x軸及圓M的弦PF所對的劣弧圍成的圖形的面積;若不能,說明理由.

查看答案和解析>>

已知圓O:x2+y2=1和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,切點為Q,且滿足|PQ|=|PA|
(1)求實數(shù)a、b間滿足的等量關(guān)系;
(2)若以P為圓心所作的圓P與圓O有公共點,試求半徑取最小值時圓P的方程.

查看答案和解析>>


同步練習(xí)冊答案