A. B. [-4.1] C. (-∞.-4][1.∞) D. 查看更多

 

題目列表(包括答案和解析)

點(diǎn)A(-3,1,5),B(4,3,1)的中點(diǎn)坐標(biāo)是(  )

A.  B.

C.  D.

查看答案和解析>>

點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是

[  ]
A.

-1<a<1

B.

0<a<1

C.

a<-1或a>1

D.

a=±1

查看答案和解析>>

若a-1≤≤a的解集是,則a的值是

[  ]

A.   B.2   C.3   D.4

查看答案和解析>>

設(shè)|a|=1,|b|=4,若|a-a|=2,則|a+a|=

A.3

B.8

C.

D.

查看答案和解析>>

A(1,3)點(diǎn)按a平移后得到點(diǎn)B(4,1),那么C(2,1)點(diǎn)按a平移后得到點(diǎn)坐標(biāo)是

[  ]

A.(3,-2)
B.(5,-1)
C.(-1,3)
D.(0,4)

查看答案和解析>>

1―6、AABCCD   7―12、DBBDCA

13、(lg2,+∞)   14、0, 15、-1

16、(文)-10,(理)(2-i)/3

19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

    ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

    ∴BC長度即為B點(diǎn)到平面A1C1CA的距離

    ∵BC=2  ∴點(diǎn)B到平面A1C1CA的距離為2……………………4分

(2)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

    ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

    ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

    ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

    即二面角B―A1D―A的大小為                   ………………10分

   

(1)同解法一……………………4分

(2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn)

建立如圖所示的坐標(biāo)系得

C(0,0,0) B(2,0,0)  A(0,2,0)

C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

D(0,0,1)  E(1,0,2)………………6分

  設(shè)平面A1BD的法向量為n

       …………8分

平面ACC1A1­的法向量為m=(1,0,0)  …………9分

即二面角B―A1D―A的大小為………………10分

20.(文) 解:將各項(xiàng)指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

(1)由于“至少有兩項(xiàng)指標(biāo)不合格”,與“至多1項(xiàng)指標(biāo)不合格”對立,故這個電子

元件不能出廠的概率為  ………………6分

(2)直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項(xiàng)檢驗(yàn)中恰有1項(xiàng)

檢驗(yàn)不合格. 故直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

……………………12分

(理)  解:(Ⅰ)

 

1

2

3

4

5

6

7

8

9

P

(Ⅱ)

21.解:(1)當(dāng)k=0時,y=1與3x2-y2=1有二公共點(diǎn);若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時,直線與雙曲線漸近線平行,無二公共點(diǎn),所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-,)且k≠±時,直線與雙曲線交于二點(diǎn),反之亦然.

(2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因?yàn)閳A過原點(diǎn),以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

22.解:(1)  ………………2分

    由已知條件得:    ………………4分

       (2)………………5分

    ………………6分

    令    ………………7分

    ∴函數(shù)的單調(diào)遞增區(qū)間為

    當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

    綜上:當(dāng)m>0時,函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時,

    函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

   (3)由(1)得: 

    …………10分

    令………………11分

   

    即:……………………14分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

數(shù)學(xué)2參考答案(2007年10月17日

1―6、AABCCD   7―12、DBBDCA

13、(lg2,+∞)   14、0, 15、-1

16、(文)-10,(理)(2-i)/3

19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

    ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

    ∴BC長度即為B點(diǎn)到平面A1C1CA的距離

    ∵BC=2  ∴點(diǎn)B到平面A1C1CA的距離為2……………………4分

(2)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

    ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

    ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

    ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

    即二面角B―A1D―A的大小為                   ………………10分

   

    <td id="apcmu"></td>
    <td id="apcmu"></td>
    <ol id="apcmu"><sup id="apcmu"><noscript id="apcmu"></noscript></sup></ol>
    <mark id="apcmu"></mark>

    (1)同解法一……………………4分

    (2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

    AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn)

    建立如圖所示的坐標(biāo)系得

    C(0,0,0) B(2,0,0)  A(0,2,0)

    C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

    D(0,0,1)  E(1,0,2)………………6分

      設(shè)平面A1BD的法向量為n

           …………8分

    平面ACC1A1­的法向量為m=(1,0,0)  …………9分

    即二面角B―A1D―A的大小為………………10分

    20.(文) 解:將各項(xiàng)指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

    (1)由于“至少有兩項(xiàng)指標(biāo)不合格”,與“至多1項(xiàng)指標(biāo)不合格”對立,故這個電子

    元件不能出廠的概率為  ………………6分

    (2)直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項(xiàng)檢驗(yàn)中恰有1項(xiàng)

    檢驗(yàn)不合格. 故直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

    ……………………12分

    (理)  解:(Ⅰ)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    P

    (Ⅱ)

    21.解:(1)當(dāng)k=0時,y=1與3x2-y2=1有二公共點(diǎn);若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時,直線與雙曲線漸近線平行,無二公共點(diǎn),所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-,)且k≠±時,直線與雙曲線交于二點(diǎn),反之亦然.

    (2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因?yàn)閳A過原點(diǎn),以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

    22.解:(1)  ………………2分

        由已知條件得:    ………………4分

           (2)………………5分

        ………………6分

        令    ………………7分

        ∴函數(shù)的單調(diào)遞增區(qū)間為

        當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

        綜上:當(dāng)m>0時,函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時,

        函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

       (3)由(1)得: 

        …………10分

        令………………11分

       

        即:……………………14分

     


    同步練習(xí)冊答案