20.將一顆骰子先后拋擲兩次.得到的點數(shù)分別記為a.b. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:

(1)兩數(shù)之和為5的概率;

(2)以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=15的內(nèi)部的概率.

 

查看答案和解析>>

(本小題滿分12分)將一顆骰子先后拋擲2次,觀察向上的點數(shù),求

(1)兩數(shù)之和為5的概率;

(2)兩數(shù)中至少有一個奇數(shù)的概率;

(3)以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=15

的內(nèi)部的概率.

 

查看答案和解析>>

(本小題滿分12分)將一顆骰子先后拋擲2次,觀察向上的點數(shù),問:

(1)兩數(shù)之和為8的概率;    

(2)兩數(shù)之和是3的倍數(shù)的概率;

(3)以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=25

的內(nèi)部的概率。  K^S*5U.C

查看答案和解析>>

(本小題滿分12分)將一顆骰子先后拋擲2次,觀察向上的點數(shù),問:

(1)兩數(shù)之和為8的概率;    

(2)兩數(shù)之和是3的倍數(shù)的概率;

(3)以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=25

的內(nèi)部的概率。  K^S*5U.C

查看答案和解析>>

(本小題滿分12分)

將一顆骰子先后拋擲2次,觀察向上的點數(shù).

(Ⅰ) 列舉出所有可能的結果,并求兩點數(shù)之和為5的概率;

(Ⅱ) 求以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=15的內(nèi)部的概率.

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.    15.    16.①③④

三、解答題

17.解:(1)由題設

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設知

……………………3分

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

∵EF為△A­BC1的中位線,

∴EF//BC1,……………………3分

又∵EF平面AB1F,BC1平面AB1F

∴BC1//平面AB1F,………………6分

(2)在正三棱柱中,

B2F⊥A1C1,

而A1C1B1⊥面ACC1A1,

∵B1F⊥平面AA1C1C,A1M平面AA1C1C,

∴B1F⊥A1M,

在△AA1F中,

在△A1MC1中,…………………………9分

∴∠AFA1=∠A1MC1,

又∵∠A1MC1+∠MA1C1=90°,

∴∠AFA1+∠MA1C1=90°,

∴A1M⊥AF,…………………………11分

又∵,

∴A1M⊥平面AFB1.…………………………12分

20.(本小題滿分12分)

解:(1)先后兩次拋擲一枚骰子,將得到的點數(shù)分別為a,b,

則事件總數(shù)為6×6=36…………2分

      當a=1時,b=1,2,3,4

      a=2時,b=1,2,3

      a=3時,b=1,2

      a=4,b=1

      共有(1,1)(1,2)……

      (4,1)10種情況…………6分

      …………7分

      (2)相切的充要條件是

      滿足條件的情況只有兩種情況…………10分

      ……12分

      21.(本小題滿分12分)

      解:(1)設

      ,

      ,

      …………………………3分

      ,這就是軌跡E的方程.……………………4分

      (2)當時,軌跡為橢圓,方程為①…………5分

      設直線PD的方程為

      代入①,并整理,得

         ②

      由題意,必有,故方程②有兩上不等實根.

      設點

      由②知,………………7分

      直線QF的方程為

      時,令

      代入

      整理得,

      再將代入,

      計算,得x=1,即直線QF過定點(1,0)

      當k=0時,(1,0)點……………………12分

      22.(本小題滿分14分)

      解:(1)當a=0,b=3時,

      ,解得

      x變化時,變化狀態(tài)如下表:

      0

      (0,2)

      2

      +

      0

      -

      0

      +

      0

      -4

      從上表可知=

      ……………………5分

      (2)當a=0時,≥在恒成立,

      在在恒成立,……………………………7分

      d則

      x>1時,>0,

      是增函數(shù),

      b≤1.…………………………………………………………9分

      (Ⅲ)∵ ,∴?=0,

      ,∴

      由題知,的兩根,

      >0………………………11分

      則①式可化為

      ………………………………………………12分

      當且僅當,即時取“=”.

      的取值范圍是 .……………………………………14分

       

       

       


      同步練習冊答案
      <form id="rkdrw"><sup id="rkdrw"></sup></form>