C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數(shù)滿足,且當(dāng)時,,則當(dāng)時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數(shù)的共有  (  )    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設(shè)

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設(shè)圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設(shè)知

……………………3分

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點O,

<track id="92ho2"></track>
<rt id="92ho2"><del id="92ho2"></del></rt>

∴PO⊥AC,

又∵面PAC⊥面ABC,PO面PAC,

∴PO⊥面ABC,……………………2分

連結(jié)OD,則OD//BC,

∴DO⊥AC,

由三垂線定理知AC⊥PD.……………………4分

(2)連接OB,過E作EF⊥OB于F,

又∵面POB⊥面ABC,

∴EF⊥面ABC,

過F作FG⊥AC,連接EG,

由三垂線定理知EG⊥AC,

∴∠EGF即為二面角E―AC―B的平面角…………6分

……………………9分

(3)由題意知

.…………………………12分

20.(本小題滿分12分)

解:(1)設(shè)“生產(chǎn)一臺儀器合格”為事件A,則

……………………2分

(2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

所以的分布列為:

3

2

1

0

P

 

的數(shù)學(xué)期望

…………9分

(3)該廠每生產(chǎn)一件儀器合格率為

∴每臺期望盈利為(萬元)

∴該廠每月期望盈利額為萬元……………………12分

21.(本小題滿分12分)

解:(1)設(shè)

,

,

…………………………3分

,這就是軌跡E的方程.……………………4分

(2)當(dāng)時,軌跡為橢圓,方程為①…………5分

設(shè)直線PD的方程為

代入①,并整理,得

   ②

由題意,必有,故方程②有兩上不等實根.

設(shè)點

由②知,………………7分

直線QF的方程為

當(dāng)時,令,

代入

整理得,

再將代入,

計算,得x=1,即直線QF過定點(1,0)

當(dāng)k=0時,(1,0)點……………………12分

22.(本小題滿分14分)

解:(1)

由題知,即a-1=0,∴a=1.……………………………2分

x≥0,∴≥0,≥0,

又∵>0,∴x≥0時,≥0,

上是增函數(shù).……………………4分

(Ⅱ)由(Ⅰ)知

下面用數(shù)學(xué)歸納法證明>0.

①當(dāng)n=1時,=1>0成立;

②假設(shè)當(dāng)時,>0,

上是增函數(shù),

>0成立,

綜上當(dāng)時,>0.……………………………………6分

>0,1+>1,∴>0,

>0,∴,…………………………………8分

=1,∴≤1,綜上,0<≤1.……………………………9分

(3)∵0<≤1,

,

,

,

>0,………………………………………11分

=??……

  =n.……………………………12分

∴Sn++…+

+()2+…+()n

==1.

∴Sn<1.………………………………………………………………14分

 

 

 


同步練習(xí)冊答案