(1)求數(shù)列的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說明理由

查看答案和解析>>

數(shù)列的通項(xiàng)公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述結(jié)果推測(cè)出計(jì)算f(n)的公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求數(shù)列的前2m項(xiàng)和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說明理由。

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。

   (1)若,求b3;

   (2)若,求數(shù)列的前2m項(xiàng)和公式;

   (3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說明理由。

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求數(shù)列的前2m項(xiàng)和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說明理由。

查看答案和解析>>

一.選擇題

1.B    2.B  3. A   4.A   5.C   6. D  7.B   8.D   9.B  10.A  11.C   12.C

二.填空題

13.(1, )∪( ,2)       14.      15.      16. ②③④

三.解答題

17.解:(1)兩學(xué)生成績(jī)績(jī)的莖葉圖如圖所示……………4分    

(2)將甲、乙兩學(xué)生的成績(jī)從小到大排列為:

甲: 512  522  528  534  536  538  541  549   554  556   

乙:515  521  527  531  532  536   543  548   558   559   

從以上排列可知甲學(xué)生成績(jī)的中位數(shù)為……6分  

 乙學(xué)生成績(jī)的中位數(shù)為       …………8分

甲學(xué)生成績(jī)的平均數(shù)為:

……………10分   

乙學(xué)生成績(jī)的平均數(shù)為:

……………12分     

18.解:(1)∵

 ∴,

 ∴,∴ ∈(0,π)  ∴ ……4分

(2)∵,即                    ①   …………6分

 又,即    ②   …………8分

 由①②可得,∴     ………………………………………10分

 又,     ……………………………………12分

高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第1頁(yè)

19.(I)設(shè)的中點(diǎn),連結(jié),則四邊形為正方形,……………2分

.故,,,即

………………………4分

平面,…………………………6分

(II)證明:DC的中點(diǎn)即為E點(diǎn),    ………………………………………………8分

連D1E,BE   ∴四邊形ABED是平行四邊形,

∴ADBE,又ADA1D1    A1D1    ∴四邊形A1D1EB是平行四邊形  D1E//A1B ,

∵D1E平面A1BD   ∴D1E//平面A1BD!12分

20.解:(1)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則

得a=3 ,  b=-2, 所以  f(x)=3x2-2x.  ……………………………………3分

又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.

當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-=6n-5.

當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()………6分

(2)由(1)得知,……8分

故Tn(1-)………10分

因此,要使(1-)<)成立的m,必須且僅須滿足

,即m≥10,所以滿足要求的最小正整數(shù)m為10.  ………………………12分

  • <td id="7n8ik"></td>
    <label id="7n8ik"><progress id="7n8ik"></progress></label>
      1. 3x2+x-8<0,

        3x2-x-2<0,

         

        由-1≤a≤1的一切a的值,都有g(shù)(x)<0              -<x<1 …………6分

        高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第2頁(yè)

        (2)       a=時(shí),, 函數(shù)y=f(x)的圖像與直線y=3只有一個(gè)公共點(diǎn),

        即函數(shù)F(x)= 的圖像與x軸只有一個(gè)公共點(diǎn)!8分

        知,

        若m=0,則 F(x)=0顯然只有一個(gè)根;

        若m≠0,則F(x)在x=-點(diǎn)取得極大值,在x=點(diǎn)取得極小值.

        因此必須滿足F(-)<0或F()>0,

        -<m<0或0<m<

        綜上可得 -<m <.                                ………………13分

        22.解:(1)設(shè)橢圓方程為,則.

        ∴橢圓方程為                   ……………………4分

        (2)∵直線l平行于OM,且在y軸上的截距為m,     又KOM=,

        ,聯(lián)立方程有

        ,    ∵直線l與橢圓交于A.B兩個(gè)不同點(diǎn),

                …………8分

        (3)設(shè)直線MA,MB的斜率分別為k1,k2,只需證明k1+k2=0即可

        設(shè)

           由

         

        高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第3頁(yè)

        故直線MA,MB與x軸始終圍成一個(gè)等腰三角形. ……………………13分

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

        高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第4頁(yè)

         


        同步練習(xí)冊(cè)答案