11.定義f (M)=(m.n.p).其中M是△ABC內(nèi)一點(diǎn).m.n.p分別是△MBC.△MCA.△MAB的面積.已知△ABC中..∠BAC=30º.f (N)=(.x.y).則的最小值是A.8 B.9 C.16 D.18 查看更多

 

題目列表(包括答案和解析)

設(shè)M是△ABC內(nèi)一點(diǎn),且△ABC的面積為1,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(M)=(
1
2
,x,y),則
1
x
+
4
y
的最小值是( 。
A、8B、9C、16D、18

查看答案和解析>>

設(shè)M是△ABC內(nèi)一點(diǎn),且S△ABC的面積為2,定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若△ABC內(nèi)一動(dòng)點(diǎn)P滿足f(P)=(1,x,y),則
1
x
+
4
y
的最小值是( 。

查看答案和解析>>

設(shè)M是△ABC內(nèi)一點(diǎn),且
AB
AC
=2
3
,∠BAC=30°,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(P)=(
1
2
,x,y)則
1
x
+
4
y
的最小值( 。

查看答案和解析>>

設(shè)M是△ABC中任意一點(diǎn),且
AB
MC
=2
3
+
AB
MA
,∠BAC=30°
,定義f(P)=(m,n,p),其中m、n、p分別表示△MBC、△MCA、△MAB的面積,若f(Q)=(
1
2
,x,y)
,則在平面直坐標(biāo)系中點(diǎn)(x,y)的軌跡是( 。

查看答案和解析>>

設(shè)M是△ABC內(nèi)一點(diǎn),
AB
AC
=2
3
,∠BAC=30°
,定義f(x)=(m,n,p),其中m,n,p分別是△MBC,△MAC,△MAB的面積,若f(Q)=(
1
2
,x,y)
1
x
+
4
y
=a , 則
a2+2
a
的取值范圍是
[
163
9
,+∞
[
163
9
,+∞

查看答案和解析>>


同步練習(xí)冊(cè)答案