20.解:(1)根據(jù)題意可列出如下方程組: 查看更多

 

題目列表(包括答案和解析)

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過(guò)點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。

第一問(wèn)中,利用

第二問(wèn)中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

如圖,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

(1)寫(xiě)出之間的等量關(guān)系,以及之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問(wèn)利用有,得到

第二問(wèn)證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,

第三問(wèn) 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

則當(dāng)時(shí),由歸納假設(shè)及,

解得不合題意,舍去)

即當(dāng)時(shí),命題成立.  …………………………………………4分

綜上所述,對(duì)所有,.    ……………………………1分

(3) 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點(diǎn).

(1)求圓錐體的體積;

(2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).

【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

第一問(wèn)中,由題意,,故

從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

解:(1)由題意,,

從而體積.

(2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

 

查看答案和解析>>

在等比數(shù)列中,,

(1)求數(shù)列的通項(xiàng)公式; (2)求數(shù)列的前項(xiàng)和

【解析】第一問(wèn)中利用等比數(shù)列中,兩項(xiàng)確定通項(xiàng)公式即可

第二問(wèn)中,在第一問(wèn)的基礎(chǔ)上,然后求和。

解:(1)由題意得到:

       ……6分

(2)      ……①

   …… ②

①-②得到

 

查看答案和解析>>

某廠制造A種電子裝置45臺(tái),B種電子裝置55臺(tái),為了給每臺(tái)裝置裝配一個(gè)外殼,要從兩種不同規(guī)格的薄鋼板上截取.已知甲種薄鋼板每張面積為2m2,可做A種外殼3個(gè)和B種外殼5個(gè);乙種薄鋼板每張面積為3m2,可做A種和B種外殼各6個(gè),用這兩種薄鋼板各多少?gòu),才能使總的用料面積最?(請(qǐng)根據(jù)題意,在下面的橫線處按要求填上恰當(dāng)?shù)年P(guān)系式或數(shù)值)
解:設(shè)用甲、乙兩種薄鋼板各x張,y張,
則可做A種外殼
3x+6y
3x+6y
個(gè),B種外殼
5x+6y
5x+6y
個(gè),所用鋼板的總面積為z=
2x+3y
2x+3y
(m2)依題得線性約束條件為:
3x+6y≥45
5x+6y≥55
x≥0
y≥0
,(x,y∈N)
3x+6y≥45
5x+6y≥55
x≥0
y≥0
,(x,y∈N)
作出線性約束條件對(duì)應(yīng)的平面區(qū)域如圖(用陰影表示)依圖可知,目標(biāo)函數(shù)取得最小值的點(diǎn)為
(5,5)
(5,5)
,且最小值z(mì)min=
25
25
(m2

查看答案和解析>>


同步練習(xí)冊(cè)答案