(4)設(shè).都是正數(shù).則的最小值是 (A)6 (B)16 (C)26 (D)36 查看更多

 

題目列表(包括答案和解析)

設(shè)x,y都是正數(shù),且xy-(x+y)=1,則x+y的最小值為(  )

查看答案和解析>>

給出下列四個(gè)命題:①
1
0
1-x2
dx
=
π
4
,②α,β都是第三象限角,若cosα>cosβ,則sinα>sinβ,③對(duì)于兩個(gè)變量之間的相關(guān)系數(shù)r,|r|≤1且|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越小;④設(shè)O為坐標(biāo)原點(diǎn),A(1,1),若點(diǎn)B滿足
x2+y2-2x-2y+1≥0
1≤x≤2
1≤y≤2
,則
OA
OB
的最小值為2+
2
.其中正確的命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

規(guī)定Cmx=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且C0x=1,這是組合數(shù)Cmn(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C3-15的值;
(2)設(shè)x>0,當(dāng)x為何值時(shí),
C
3
x
(C
1
x
)2
取得最小值?
(3)組合數(shù)的兩個(gè)性質(zhì);
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推廣到Cmx(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
變式:規(guī)定Axm=x(x-1)…(x-m+1),其中x∈R,m為正整數(shù),且Ax0=1,這是排列數(shù)Anm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求A-153的值;
(2)排列數(shù)的兩個(gè)性質(zhì):①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整數(shù))是否都能推廣到Axm(x∈R,m是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(3)確定函數(shù)Ax3的單調(diào)區(qū)間.

查看答案和解析>>

已知函數(shù)f(x)=ax+bsinx,當(dāng)數(shù)學(xué)公式時(shí),f(x)取得極小值數(shù)學(xué)公式
(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記數(shù)學(xué)公式,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

(08年威海市模擬理) 設(shè)x、y都是正數(shù),則的最小值是                             (    )

    A.6              B.16             C.26             D.36

查看答案和解析>>

 

一.選擇題(本大題共12小題,每小題5分,共60分.)

D C B B C       D C A C C       A B

二.填空題(本大題共4小題,每小題4分,共16分.)

(13)        (14)        (15)        (16)―1

三.解答題

(17)(本小題滿分12分)

解:(Ⅰ)將一顆骰子先后拋擲2次,此問題中含有36個(gè)等可能的基本事件.    2分

記“兩數(shù)之和為7”為事件A,則事件A中含有6個(gè)基本事件(將事件列出更好),

∴ P(A)

記“兩數(shù)之和是4的倍數(shù)”為事件B,則事件B中含有9個(gè)基本事件,

∴ P(B)

    ∵ 事件A與事件B是互斥事件,∴ 所求概率為 .         8分

    (Ⅱ)記“點(diǎn)(x,y)在圓  的內(nèi)部”事件C,則事件C中共含有11個(gè)基本事件,∴ P(C)=.                                                   12分

(18)(本小題滿分12分)

解:(Ⅰ)∵ ABC―A1B1C1是正棱柱,

∴ BB1⊥AC,BP⊥AC.∴ AC ⊥ 平面PBB1

又∵M(jìn)、N分別是AA1、CC1的中點(diǎn),

∴ MN∥AC.∴ MN ⊥ 平面PBB1      4分

(Ⅱ)∵M(jìn)N∥AC,∴A C ∥ 平面MNQ.

QN是△B1CC1的中位線,∴B1C∥QN.∴B1C∥平面MNQ.

∴平面AB1 C ∥ 平面MNQ.                                               8分

(Ⅲ)由題意,△MNP的面積

Q點(diǎn)到平面ACC1A1的距離H顯然等于△A1B1C1的高的一半,也就是等于BP的一半,

.∴三棱錐 Q ― MNP 的體積.              12分

(19)(本小題滿分12分)

解:(Ⅰ):

          3分

依題意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值為 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵ ,

,.解得

又 ∵ 0, ∴ .                                 12分

(20)(本小題滿分12分)

解:(Ⅰ)對(duì)求導(dǎo)得

依題意有 ,且 .∴ ,且

解得 . ∴ .                             6分

(Ⅱ)由上問知,令,得

顯然,當(dāng)  或  時(shí),;當(dāng)  時(shí),

.∴ 函數(shù)上是單調(diào)遞增函數(shù),在上是單調(diào)遞減函數(shù).

當(dāng)時(shí)取極大值,極大值是

當(dāng)時(shí)取極小值,極小值是.   12分

(21)(本小題滿分12分)

解:(Ⅰ)∵

設(shè)O關(guān)于直線

對(duì)稱點(diǎn)為的橫坐標(biāo)為

又易知直線  解得線段的中點(diǎn)坐標(biāo)

為(1,-3).∴

∴ 橢圓方程為 .                                           5分

(Ⅱ)顯然直線AN存在斜率,設(shè)直線AN的方程為 ,代入 并整理得:. 

設(shè)點(diǎn),,則

由韋達(dá)定理得 .                       8分

∵ 直線ME方程為 ,令,得直線ME與x軸的交點(diǎn)

的橫坐標(biāo)

,代入,并整理得 .   10分

再將韋達(dá)定理的結(jié)果代入,并整理可得

∴ 直線ME與軸相交于定點(diǎn)(,0).                                  12分

(22)(本小題滿分14分)

證明:(Ⅰ)∵ , ∴

顯然 , ∴ .                                       5分

,,……,

將這個(gè)等式相加,得 ,∴ .          7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 

 

 


同步練習(xí)冊(cè)答案