若對(duì)一切都成立.那么的取值范圍是 , 查看更多

 

題目列表(包括答案和解析)

(A類(lèi))定義在R上的函數(shù)y=f(x),對(duì)任意的a,b∈R,滿(mǎn)足f(a+b)=f(a)•f(b),當(dāng)x>0時(shí),有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
(B類(lèi))已知定義在R上的奇函數(shù)f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對(duì)一切實(shí)數(shù)x及m恒成立,求實(shí)數(shù)k的取值范圍;
(3)定義:若存在一個(gè)非零常數(shù)T,使得f(x+T)=f(x)對(duì)定義域中的任何實(shí)數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對(duì)定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

(A類(lèi))定義在R上的函數(shù)y=f(x),對(duì)任意的a,b∈R,滿(mǎn)足f(a+b)=f(a)•f(b),當(dāng)x>0時(shí),有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
(B類(lèi))已知定義在R上的奇函數(shù)f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對(duì)一切實(shí)數(shù)x及m恒成立,求實(shí)數(shù)k的取值范圍;
(3)定義:若存在一個(gè)非零常數(shù)T,使得f(x+T)=f(x)對(duì)定義域中的任何實(shí)數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對(duì)定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

一、選擇題   A D B A C      B A D A C  B  B

二、填空題

13..    14.   15. .16.①②③④

三、解答題

17.(1) =

=

==

==.

的最小正周期

(2) ∵,  ∴.

∴當(dāng),即=時(shí),有最大值;

當(dāng),即=時(shí),有最小值-1.

 

18. (1)連結(jié),則的中點(diǎn),

在△中,

平面,平面,

∥平面 

   (2) 因?yàn)?sub>平面,平面,

,

,所以,⊥平面,

∴四邊形 是矩形,

且側(cè)面⊥平面

的中點(diǎn),,

平面.

所以,多面體的體積

19.解:(Ⅰ)依題意,甲答對(duì)試題數(shù)的概率分布如下:

0

1

2

3

 

 

 

甲答對(duì)試題數(shù)的數(shù)學(xué)期望:

 

(Ⅱ)設(shè)甲、乙兩人考試合格的事件分別為

        

甲、乙兩人考試均不合格的概率為:

∴甲、乙兩人至少一個(gè)合格的概率為

20.(1)

,于是,

為首相和公差均為1的等差數(shù)列.

, 得, 

(2),

,

兩式相減,得,

解出

21. 因                  

而函數(shù)處取得極值2             

所以                     

所以   為所求                       

文本框:  文本框:  (2)由(1)知

可知,的單調(diào)增區(qū)間是

所以,       

所以當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增  

(3)由條件知,過(guò)的圖形上一點(diǎn)的切線的斜率為:

 

,則,  

此時(shí) ,

根據(jù)二次函數(shù)的圖象性質(zhì)知:

當(dāng)時(shí),                

當(dāng)時(shí),

所以,直線的斜率的取值范圍是

22. 解:(1)∵點(diǎn)A在圓,

      

       由橢圓的定義知:|AF1|+|AF2|=2a,

        

   (2)∵函數(shù)

  

           點(diǎn)F1(-1,0),F2(1,0), 

           ①若,

       ∴

       ②若ABx軸不垂直,設(shè)直線AB的斜率為k,則AB的方程為y=kx+1)

       由…………(*)

       方程(*)有兩個(gè)不同的實(shí)根.

       設(shè)點(diǎn)Ax1,y1),Bx2,y2),則x1x2是方程(*)的兩個(gè)根

        

      

      

        

      

       由①②知


同步練習(xí)冊(cè)答案