題目列表(包括答案和解析)
對于解方程x2-2x-3=0的下列步驟:
①設(shè)f(x)=x2-2x-3
②計算方程的判別式Δ=22+4×3=16>0
③作f(x)的圖象
④將a=1,b=-2,c=-3代入求根公式
x=,得x1=3,x2=-1.
其中可作為解方程的算法的有效步驟為( )
A.①② B.②③
C.②④ D.③④
已知二次函數(shù)的二次項系數(shù)為,且不等式的解集為,
(1)若方程有兩個相等的根,求的解析式;
(2)若的最大值為正數(shù),求的取值范圍.
【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),
設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。
第二問中,
解:(1)∵f(x)+2x>0的解集為(1,3),
①
由方程
②
∵方程②有兩個相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故當f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是
(x-a)2+(y-b)2 |
x2+8x+20 |
x2-2x+2 |
26 |
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。
(1)問中∵,∴,…………………1分
∵,得到三角關(guān)系是,結(jié)合,解得。
(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②聯(lián)立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,從而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
綜上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
綜上可得 …………………12分
(若用,又∵ ∴ ,
某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個) |
2 |
3 |
4 |
5 |
加工的時間y(小時) |
2.5 |
3 |
4 |
4.5 |
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程,并在坐標系中畫出回歸直線;
(3)試預測加工10個零件需要多少時間?
(注:)
【解析】第一問中利用數(shù)據(jù)描繪出散點圖即可
第二問中,由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回歸方程。
第三問中,將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時)得到結(jié)論。
(1)散點圖如下圖.
………………4分
(2)由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,
∴=…=0.7,=…=1.05.
∴=0.7x+1.05.回歸直線如圖中所示.………………8分
(3)將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時),
∴預測加工10個零件需要8.05小時
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com