題目列表(包括答案和解析)
如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).
(1)寫(xiě)出、和之間的等量關(guān)系,以及、和之間的等量關(guān)系;
(2)求證:();
(3)設(shè),對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.
【解析】第一問(wèn)利用有,得到
第二問(wèn)證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,
得
第三問(wèn)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
解:(1)依題意,有,,………………4分
(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分
②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分
則當(dāng)時(shí),由歸納假設(shè)及,
得.
即
解得(不合題意,舍去)
即當(dāng)時(shí),命題成立. …………………………………………4分
綜上所述,對(duì)所有,. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
.……………2分
由題意,有. 所以,
(1)求f(x)的單調(diào)區(qū)間;
(2)討論f(x)的極值.
所以f(-1)=2是極大值,f(1)=-2是極小值.
(2)曲線方程為y=x3-3x,點(diǎn)A(0,16)不在曲線上.
設(shè)切點(diǎn)為M(x0,y0),則點(diǎn)M的坐標(biāo)滿(mǎn)足y0=x03-3x0.
因f′(x0)=3(x02-1),故切線的方程為y-y0=3(x02-1)(x-x0).
注意到點(diǎn)A(0,16)在切線上,有16-(x03-3x0)=3(x02-1)(0-x0),
化簡(jiǎn)得x03=-8,解得x0=-2.
所以切點(diǎn)為M(-2,-2),
切線方程為9x-y+16=0.
已知橢圓C: 的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線與橢圓C交于不同的兩點(diǎn)M,N。
(1) 求橢圓C的方程
(2) 當(dāng)的面積為時(shí),求k的值。
【解析】(1)∵∴ ∴∴
(2)
∴,
∴
化簡(jiǎn)得:,解得
已知,且.
(1)求的值;
(2)求的值.
【解析】本試題主要考查了二項(xiàng)式定理的運(yùn)用,以及系數(shù)求和的賦值思想的運(yùn)用。第一問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以,可得,第二問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image008.png">,所以,所以,利用組合數(shù)性質(zhì)可知。
解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859349851240042_ST.files/image005.png">,所以, ……3分
化簡(jiǎn)可得,且,解得. …………6分
(2),所以,
所以,
當(dāng)有意義時(shí),化簡(jiǎn)-的結(jié)果是( )
A.2x-5 B.-2x-1 C.-1 D.5-2x
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com