解(1)在雙曲線的方程中.則橢圓方程為 查看更多

 

題目列表(包括答案和解析)

下列說法中,正確的有______.
①若點P(x0,y0)是拋物線y2=2px上一點,則該點到拋物線的焦點F的距離是|PF|=x0+
P
2
;
②方程x2+y2-2x+1=0表示的圖形是圓;
③設定圓O上有一動點A,圓O內一定點M,AM的垂直平分線與半徑OA的交點為點P,則P的軌跡為一橢圓;
④某工廠甲、乙、丙三個車間生產了同一種產品,數量分別為120件,80件,60件.為了解它們的產品質量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調查,其中從丙車間的產品中抽取了3件,則n=13;
⑤雙曲線
y2
49
-
x2
25
=-1的漸近線方程是y=±
5
7
x.

查看答案和解析>>

(12分)圓、橢圓、雙曲線都有對稱中心,統(tǒng)稱為有心圓錐曲線,它們統(tǒng)一的標準方程為.圓的很多優(yōu)美性質可以類比推廣到有心圓錐曲線中,如圓的“垂徑定理”的逆定理:圓的平分弦(不是直徑)的直徑垂直于弦. 類比推廣到有心圓錐曲線:已知直線與曲線交于兩點,的中點為,若直線(為坐標原點)的斜率都存在,則.這個性質稱為有心圓錐曲線的“垂徑定理”.

(Ⅰ)證明有心圓錐曲線的“垂徑定理”;

(Ⅱ)利用有心圓錐曲線的“垂徑定理”解答下列問題:

①     過點作直線與橢圓交于兩點,求的中點的軌跡的方程;

②     過點作直線與有心圓錐曲線交于兩點,是否存在這樣的直線使點為線段的中點?若存在,求直線的方程;若不存在,說明理由.

查看答案和解析>>


同步練習冊答案