18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

說明:

    一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標準制訂相應(yīng)的評分細則。

    二、對計算題當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應(yīng)得分數(shù)的一半;如果后續(xù)部分的解答有較嚴重的錯誤,就不再給分。

    三、解答右端所注分數(shù),表示考生正確做到這一步應(yīng)得累加分。

    四、只給整數(shù)分數(shù),選擇題和填空題不給中間分數(shù)。

一、選擇題:每小題5分,滿分60分。

1―5 DBCAB    6―10 ABDAD    11―12CC

二、填空題:每題5分,共20分

13.    14.    15.2000    16.②③

三、解答題(滿分70分)

17.本小題主要考查正弦定理、余弦定理,三角形面積公式等基礎(chǔ)知識。

    解:(1)

                                    (5分)

   (2)將,

   

18.本小題主要考查概率的基本知識與分類思想,獨立重復(fù)試驗概率問題,考查運用數(shù)學知

識分析問題解決問題的能力。

解:(1)設(shè)甲獲勝為事件B,則甲獲勝包括甲以4:2獲勝和甲以4:3獲勝兩種情況:

                           (5分)

   (2)隨機變量ξ可能的取值為4,5,6,7,

ξ的分布列為:

ξ

4

5

6

7

P

                       (12分)

19.本小題主要考查正四棱柱中線線位置關(guān)系、線面垂直判定、三垂線定理、二面角等基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運算能力以及空間向量的應(yīng)用。

    ∵AC⊥BD,∴A1C⊥BD,

若A1C⊥平面BED,則A1C⊥BE,

由三垂線定理可得B1C⊥BE,

∴△BCE∽△B1BC,

   (2)連A1G,連EG交A1C于H,則EG⊥BD,

∵A1C⊥平面BED,

∴∠A1GE是二面角A1―BD―E的平面角。                            (8分)

(12分)

   (1)以D為坐標原點,射線DA為x軸的正半軸,

射線DC為y軸的正半軸,建立如圖所示直角坐

標系D―xyz。

      (6分)

   (2)設(shè)向量的一個法向量,

                         (12分)

20.本小題主要考查等差數(shù)列、等比數(shù)列定義,求通項、數(shù)列求和等基礎(chǔ)知識,考查綜合分析問題的能力和推理論證能力。

    解:(1)成等比數(shù)列,

                                            (1分)

   

    猜想:                    (4分)

    下面用數(shù)學歸納法加以證明:

   

    由上可知猜想成立

   (2)

   

21.解:(1)函數(shù)

求導(dǎo)得

   

0

(0,1)

1

0

+

0

極小

極大

    從而是函數(shù)的單調(diào)遞減區(qū)間,(0,1)是的單調(diào)遞增區(qū)間,并且當

   

   (2)設(shè)曲線,則切線的方程為

    

   (3)根據(jù)上述研究,對函數(shù)分析如下:

    

   

    交點的橫坐標,交點的個數(shù)即為方程的實根的個數(shù)。

   

    因此當a=0時,原方程只有一個實數(shù)根;

   

22.解:(1)分別過A、B作準線l的垂線,A1、B1為垂足,則根據(jù)拋物線定義得

    |AA1|=|AF|,|BB1|=|BF|,

    ∽Rt△MAA1,

   

   (2)

 

    把②兩邊平方得

    又代入上式得

    把③代入①得

   

                                         (6分)

   (3)設(shè)直線AB的傾斜角為,根據(jù)對稱性只需研究是銳角情形,不妨設(shè)是銳角,

    則

   

    從而   

        (7分)

    根據(jù)(2)知而函數(shù)上是增函數(shù),

   

    即             (9分)

   

    取得極小值;也就是最小值,

   

 

 


同步練習冊答案