A.> B.> C.> D.> 查看更多

 

題目列表(包括答案和解析)

[    ]

A.α>β>γ         B.γ>β>α

C.γ>α>β          D.β>α>γ

查看答案和解析>>

a、b、c、d均為實(shí)數(shù),使不等式
a
b
c
d
>0
和ad<bc都成立的一組值(a,b,c,d)是
 
.(只要寫出適合條件的一組值即可)

查看答案和解析>>

a>b是a>|b|的( 。

查看答案和解析>>

“a>0”是“方程y2=ax表示的曲線為拋物線”的(  )條件.

查看答案和解析>>

設(shè)>c,ac<0,則下列不等式不一定成立的是(  )。

A.a(chǎn)b>ac           B.c(b-a)>0          C.        D.a(chǎn)c(a-c) <0

 

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

D

A

D

B

D

B

B

A

C

二、填空題(每小題5分,共20分)

  13、f(x)=2x3-12x         14、           15、2             16、0≤a≤3

三、解答題

17(10分).解:原不等式等價于-----------------------------------2分

當(dāng)--------------------------------------------4分

當(dāng)

 

-------------------------------------------------6分

 

-------------------------------------------------8分

綜上:   --------------------------------10分

18(12分). 解:(Ⅰ)

                         ----------------3分

      -----------------------------4分

,  

的單調(diào)區(qū)間為     ----------------6分

(Ⅱ)由----------7分

的內(nèi)角,---------8分

          -------------------10分

     ------------12分

19(12分).解:⑴對任意的正數(shù)均有

----------2分

,                 ----------------------------------------4分

是定義在上的單調(diào)函數(shù),.     ----------6分

(2)當(dāng)時,,,.----------8分

當(dāng)時,,

.                 ----------------------------------------10分

,為等差數(shù)列.

,.                      -----------------------------------------12分

20(12分). (1)y==  

     t=2-cosx  ∵x∈[0,) ∴t∈[1,2)         -----------------------------------------3分

     ∴y===t+ -1

     ∵y=t+ -1在t∈[1,2)上為增函數(shù)  ∴y∈[1,)     即M=[1,)           6分

  (2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0  ∵a<1∴2a<a+1  ∴N=(2a,a+1)    8分

     又∁UM=(-∞,1)∪[,+∞)                                             10分

     要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥.                       12分

21(12分).解:對函數(shù)求導(dǎo),得

----------------------------2分

解得

當(dāng)變化時,、的變化情況如下表:

x

0

 

0

 

減函數(shù)

增函數(shù)

                                                ----------------------4分

所以,當(dāng)時,是減函數(shù);當(dāng)時,是增函數(shù);

           當(dāng)時,的值域?yàn)?sub>   ----------------------------6分

(Ⅱ)對函數(shù)求導(dǎo),得

                                 

    因此,當(dāng)時,

因此當(dāng),g(x)為減函數(shù),從而當(dāng)時有個g(x)

又g(1)=   ----------------8分

若對于任意,,存在,使得,則

[]

              ----------------------------------------10分

式得

式得

故:的取值范圍為                 -----------------------------------12分

22(12分). :(1)∵Sn=2an ?n  ∴Sn+1=2an+1 ?(n+1) 兩式相減得, an+1=2an+1----------------2分

     數(shù)列{an+λ}是等比數(shù)列  即: an+1+λ=2(an+λ),∴λ=1.

      ∵a1=s1=2a1-1,∴a1=1 

     ∵數(shù)列{ an+1}是首項為2,公比為2的等比數(shù)列          ------------------------4分

∴an+1=(a1+1)2n-1=2n,∴an=2n -1                         ------------------------6分

   (2)∵an=2n -1

     ∴bn ====-----------------10分

     ∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分

 

 

 


同步練習(xí)冊答案