是增函數(shù).若“且非 是真命題,則的取值范圍是 .17. 查看更多

 

題目列表(包括答案和解析)

給出下列四個(gè)命題:
(1)已知函數(shù)f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項(xiàng)公式為an=
1
an
,則數(shù)列{an}的所有項(xiàng)之和為1.
(2)過點(diǎn)P(3,3)與曲線(x-2)2-
(y-1)2
4
=1有唯一公共點(diǎn)的直線有且只有兩條.
(3)向量
a
=(x2,x+1)
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間[-1,1]上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有
(1)(2)(4)
(1)(2)(4)
(填序號(hào))

查看答案和解析>>

給出下列四個(gè)命題:
(1)已知函數(shù)f(x)=數(shù)學(xué)公式在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項(xiàng)公式為an=數(shù)學(xué)公式,則數(shù)列{an}的所有項(xiàng)之和為1.
(2)過點(diǎn)P(3,3)與曲線(x-2)2-數(shù)學(xué)公式=1有唯一公共點(diǎn)的直線有且只有兩條.
(3)向量數(shù)學(xué)公式數(shù)學(xué)公式,若函數(shù)f(x)=數(shù)學(xué)公式在區(qū)間[-1,1]上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有________(填序號(hào))

查看答案和解析>>

給出下列四個(gè)命題:
(1)已知函數(shù)f(x)=在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項(xiàng)公式為an=,則數(shù)列{an}的所有項(xiàng)之和為1.
(2)過點(diǎn)P(3,3)與曲線(x-2)2-=1有唯一公共點(diǎn)的直線有且只有兩條.
(3)向量,,若函數(shù)f(x)=在區(qū)間[-1,1]上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有    (填序號(hào))

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

D

A

D

B

D

B

B

A

C

二、填空題(每小題5分,共20分)

  13、f(x)=2x3-12x         14、           15、2             16、0≤a≤3

三、解答題

17(10分).解:原不等式等價(jià)于-----------------------------------2分

當(dāng)--------------------------------------------4分

當(dāng)

 

-------------------------------------------------6分

 

-------------------------------------------------8分

綜上:   --------------------------------10分

18(12分). 解:(Ⅰ)

                         ----------------3分

      -----------------------------4分

  

的單調(diào)區(qū)間為     ----------------6分

(Ⅱ)由----------7分

的內(nèi)角,---------8分

          -------------------10分

     ------------12分

19(12分).解:⑴對(duì)任意的正數(shù)均有

----------2分

,                 ----------------------------------------4分

是定義在上的單調(diào)函數(shù),.     ----------6分

(2)當(dāng)時(shí),,.----------8分

當(dāng)時(shí),,

.                 ----------------------------------------10分

為等差數(shù)列.

,.                      -----------------------------------------12分

20(12分). (1)y==  

     t=2-cosx  ∵x∈[0,) ∴t∈[1,2)         -----------------------------------------3分

     ∴y===t+ -1

     ∵y=t+ -1在t∈[1,2)上為增函數(shù)  ∴y∈[1,)     即M=[1,)           6分

  (2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0  ∵a<1∴2a<a+1  ∴N=(2a,a+1)    8分

     又∁UM=(-∞,1)∪[,+∞)                                             10分

     要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥.                       12分

21(12分).解:對(duì)函數(shù)求導(dǎo),得

----------------------------2分

解得

當(dāng)變化時(shí),的變化情況如下表:

x

0

 

0

 

減函數(shù)

增函數(shù)

                                                ----------------------4分

所以,當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù);

           當(dāng)時(shí),的值域?yàn)?sub>   ----------------------------6分

(Ⅱ)對(duì)函數(shù)求導(dǎo),得

                                 

    因此,當(dāng)時(shí),

因此當(dāng),g(x)為減函數(shù),從而當(dāng)時(shí)有個(gè)g(x)

又g(1)=   ----------------8分

若對(duì)于任意,,存在,使得,則

[]

              ----------------------------------------10分

式得

式得

,

故:的取值范圍為                 -----------------------------------12分

22(12分). :(1)∵Sn=2an ?n  ∴Sn+1=2an+1 ?(n+1) 兩式相減得, an+1=2an+1----------------2分

     數(shù)列{an+λ}是等比數(shù)列  即: an+1+λ=2(an+λ),∴λ=1.

      ∵a1=s1=2a1-1,∴a1=1 

     ∵數(shù)列{ an+1}是首項(xiàng)為2,公比為2的等比數(shù)列          ------------------------4分

∴an+1=(a1+1)2n-1=2n,∴an=2n -1                         ------------------------6分

   (2)∵an=2n -1

     ∴bn ====-----------------10分

     ∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分

 

 

 


同步練習(xí)冊(cè)答案