題目列表(包括答案和解析)
A.72種 | B.30種 | C.24種 | D.14種 |
(理)(本題8分)甲、乙、丙三人進(jìn)行某項(xiàng)比賽,每局有兩人參加,沒有平局,在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,比賽的規(guī)則是先由甲和乙進(jìn)行第一局的比賽,然后每局的獲勝者與未參加此局比賽的人進(jìn)行下一局的比賽,在比賽中,有人獲勝兩局就算取得比賽的勝利,比賽結(jié)束.
(1)求只進(jìn)行兩局比賽,甲就取得勝利的概率;
(2)求只進(jìn)行兩局比賽,比賽就結(jié)束的概率;
(3)求甲取得比賽勝利的概率.
20、(文)(本小題8分)甲、乙兩人做定點(diǎn)投籃,投籃者若投中則繼續(xù)投籃,否則由對(duì)方投籃,第一次甲投籃,已知甲、乙每次投籃命中的概率分別為、,且甲、乙投籃是否命中互不影響.
(1)求第三次由乙投籃的概率;
(2)求前4次投籃中各投兩次的概率.
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
A
B
D
D
C
A
A
B
A
C
D
二、填空題13.; 14.; 15.; 16..
三、解答題
17.(1)
兩兩相互垂直, 連結(jié)并延長(zhǎng)交于F.
同理可得
------------ (6分)
(2)是的重心, F是SB的中點(diǎn)
梯形的高
--- (12分)
【注】可以用空間向量的方法
18.解:
(1)設(shè)通過3次檢測(cè),就可以把3箱含“三聚氰胺”的牛奶全部篩選出來的事件為A
1分
P(A)= 5分
所以通過3次檢測(cè),就可以把3箱含“三聚氰胺”的牛奶全部篩選出來的概率為…6分
(2)設(shè)最多通過4次檢測(cè),就可以把3箱含“三聚氰胺”的牛奶全部篩選出來的事件為B … 7分
P(B)= 11分
所以最多通過4次檢測(cè),就可以把3箱含“三聚氰胺”的牛奶全部篩選出來的概率為… 12分
19.(1).
又.
.………6分
(2)
又,
.從而
當(dāng)且同向時(shí),.………12分
20.解:(1) ,
令,由得或...
當(dāng)時(shí),,當(dāng)時(shí),,所以處取極小值,即 …………4分
(2)
處取得極小值,即由即
由四邊形ABCD是梯形及BC與AD不平行,得.有即
由四邊形ABCD的面積為1,得即得,從而得 ……12分
21.(1)設(shè)雙曲線C2的方程為= 1,則a2 = 4 ? 1 = 3,再由a2 + b2 = c2得b2 = 1.故C2的方程為= 1. (5分)
(2)將y = kx +代入得(1 + 4k2)x2 + 8kx + 4 = 0,由直線l與橢圓C1恒有兩個(gè)不同的交點(diǎn)得(8)2k2 ? 16 (1 + 4k2) = 16(4k2 ? 1)>0,即k2>.①(7分)
將y = kx + 代入得(1 ? 3k2)x2 ? 6kx ? 9 = 0.由直線l與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A、B得.即k≠且k2<1.②(9分)
設(shè)A (xA,yA),B (xB,yB),則xA + xB = ,xA,xB = ,由得xA xB + yA yB<6,而xA xB + yA yB = xA xB + (kxA + ) (kxb + )= (k2 + 1) xA xB + k (xA + xB) + 2 = (k2 + 1)?,于是<6,即將.解此不等式得或. 、 (11分)
由①、②、③得,
故k的取值范圍為. (12分)
22.(1).
(2),
則,
.
(3),
即 、
又由于,
則,
兩式相減得,
,當(dāng)且時(shí)是增函數(shù),
的最小值是, 、
由①②得: 成立.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com