(II)過點交軌跡G于M.N兩點. (i)當(dāng)|MN|=3時.求M.N兩點的縱坐標(biāo)之和, 查看更多

 

題目列表(包括答案和解析)

已知圓M:(x+
5
)2+y2=36
,定點N(
5
,0)
,點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足
NP
=2
NQ
,
GQ
NP
=0

(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標(biāo)原點,設(shè)
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

已知圓M:(x+
5
)2+y2=36
,定點N(
5
,0)
,點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足
NP
=2
NQ
,
GQ
NP
=0

(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標(biāo)原點,設(shè)
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

已知圓M:(x+1)2+y2=8,定點N(1,0),點P為圓M上的動點,若Q在NP上,點G在MP上,且滿足數(shù)學(xué)公式
(I)求點G的軌跡C的方程;
(II)直線l過點P(0,2)且與曲線C相交于A、B兩點,當(dāng)△AOB面積取得最大值時,求直線l的方程.

查看答案和解析>>

已知圓M:(x+1)2+y2=8,定點N(1,0),點P為圓M上的動點,若Q在NP上,點G在MP上,且滿足
(I)求點G的軌跡C的方程;
(II)直線l過點P(0,2)且與曲線C相交于A、B兩點,當(dāng)△AOB面積取得最大值時,求直線l的方程.

查看答案和解析>>

已知圓M:(x+1)2+y2=8,定點N(1,0),點P為圓M上的動點,若Q在NP上,點G在MP上,且滿足
(I)求點G的軌跡C的方程;
(II)直線l過點P(0,2)且與曲線C相交于A、B兩點,當(dāng)△AOB面積取得最大值時,求直線l的方程.

查看答案和解析>>

 

一、選擇題(本大題共10小題,每小題5分,共50分)

1―5 ABCDC    6―10 CDBAB

二、填空題(本大題共7小題,每小題4分,共28分)

11.    12.    13.10    14.    15.1    16.50    17.―1

三、解答題(本大題共5小題,共72分。解答應(yīng)寫出文字說明、證明過程或演算過程)

18.(本小題滿分14分)

解:(I)    ………………3分

  ………………5分

   ………………8分

   (II)由(I)可得 …………14分

19.(本小題滿分14分)

解:(I)由從而

   (II),

  ………………11分

   ………………14分

20.(本小題滿分14分)

解:(1)在D1B1上取點M,使D1M=1,

連接MB,MF。 ………………1分

∵D1F=1,D1M=1,

∵BE//B1C1,BE=1,

∴MF//BE,且MF=BE

∴四邊形FMBE是平行四邊形。……5分

∴EF//BM,

又EF平面B1D1DB,

BM平面B1D1DB,

∴EF//平面B1D1DB。

   (II)∵△D­1B1C1是正三角形,取B1C1中點G,

        連接HE,F(xiàn)E。 …………8分

        ∵ABCD―A1B1C1D1是直棱柱,

        ∴C1C⊥平面A1B1C1D1,

        又D1G平面A1B1C1D1,

        ∴C1C⊥D1G,又D1G⊥B1C1

        ∴D1G⊥平面B1BCC1,又∵FH//D1G,

        ∴FH⊥平面B1BCC1

        ∴∠FEH即為直線EF與平面B1BCC1所成角!10分

        21.(本小題滿分15分)

        解:(I)把點……1分

        …………3分

           (II)當(dāng)

        單調(diào)遞減區(qū)間是,

        22.(本小題滿分15分)

            解:(I)設(shè)翻折后點O坐標(biāo)為

          …………3分

           ………………4分

        當(dāng)   ………………5分

        綜上,以  …………6分

        說明:軌跡方程寫為不扣分。

           (II)(i)解法一:設(shè)直線

        解法二:由題意可知,曲線G的焦點即為……7分

           (ii)設(shè)直線

        …………13分

        故當(dāng)

         


        同步練習(xí)冊答案