(Ⅱ)數列滿足:.且,記數列的前n項和為. 查看更多

 

題目列表(包括答案和解析)

數列{an}前n項和記為Sn,且an>0,Sn=
1
8
(an+2)2(n∈N*)

(1)求數列{an}通項公式an
(2)若bn滿足bn=(t-1)
an+2
4
(t>1)
,Tn為數列{bn}前n項和,求:Tn
(3)在(2)的條件下求
lim
n→∞
Tn
Tn+1

查看答案和解析>>

記數列{an}的前n項和為Sn,所有奇數項之和為S′,所有偶數項之和為S″.
(1)若{an}是等差數列,項數n為偶數,首項a1=1,公差,且S″-S′=15,求Sn;
(2)若無窮數列{an}滿足條件:①(n∈N*),②S′=S″.求{an}的通項;
(3)若{an}是等差數列,首項a1>0,公差d∈N*,且S′=36,S″=27,請寫出所有滿足條件的數列.

查看答案和解析>>

(Ⅰ)已知函數f(x)=
x
x+1
.數列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數列{bn}的前n項和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數列{bn}的通項公式;并判斷b4+b6是否仍為數列{bn}中的項?若是,請證明;否則,說明理由.
(Ⅱ)設{cn}為首項是c1,公差d≠0的等差數列,求證:“數列{cn}中任意不同兩項之和仍為數列{cn}中的項”的充要條件是“存在整數m≥-1,使c1=md”.

查看答案和解析>>

數列{an}的前n項和為Sn(n∈N*),Sn=(m+1)-man對任意的n∈N*都成立,其中m為常數,且m<-1.
(1)求證:數列{an}是等比數列;
(2)記數列{an}的公比為q,設q=f(m).若數列{bn}滿足;b1=a1,bn=f(bn-1)(n≥2,n∈N*).求證:數列{
1bn
}
是等差數列;
(3)在(2)的條件下,設cn=bn•bn+1,數列{cn}的前n項和為Tn.求證:Tn<1.

查看答案和解析>>

數列{an}的前n項和記作Sn,滿足Sn=2an+3n-12  (n∈N*).
(1)求出數列{an}的通項公式;
(2)若bn=
an
(Sn-3n)(an+1-6) 
,求證:b1+b2+…+bn
1
6

(3)若cn=
an-3
3n
,且
1
c1
+
1
c2
+…+
1
cn
<loga(6-a)對所有的正整數n恒成立,求實數a的取值范圍.

查看答案和解析>>

 

說明:

       一、本解答指出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據試題的主要考查內容比照評分標準制定相應的評分細則.

       二、對計算題,當考生的解答在某一步出現錯誤時,如果后繼部分的解答未改變該題的內容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應給分數的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

       三、解答右端所注分數,表示考生正確做到這一步應得的累加分數.

       四、只給整數分數,選擇題和填空題不給中間分.

一、選擇題:本題考查基本知識和基本運算,每小題5分,滿分50分.

1. A        2. C        3. C        4.C         5.D         6.D         7. B        8. D        9. B        10. C

二、填空題:本題考查基本知識和基本運算,每小題4分,滿分20分.

11.  12.38            12.  5           13.  3        14.     15. ②③

三、解答題:本大題共6小題,共80分,解答應寫出文字說明,證明過程或演算步驟.

16. 本小題主要考查正弦定理、三角函數的倍角公式、兩角和公式等基本知識,考

查學生的運算求解能力. 滿分13分.

解:(Ⅰ)由,知                 ………………………(2分)

,得,

          ,                   ………(5分)

                                   ………(6分)

(Ⅱ) 由(Ⅰ)知,

          

                   ………………(9分)

        

         當,即時,取得最大值為.   ……(13分)                               

17. 本題主要考查線線、線面、面面位置關系,線面角等基本知識,考查空間想像能力,運算求解能力和推理論證能力. 滿分13分.

解:(Ⅰ)證明:如圖,取中點,連結,

,,

,,

,…………(3分)

四邊形為平行四邊形,

,

平面,平面,

∥平面.                        ………………………(6分)

(Ⅱ)依題意知平面平面,

平面,得  

,.

如圖,以為原點,建立空間直角坐標系-xyz

,可得、、

.

設平面的一個法向量為,

   得

解得.            ………………(9分)

設線段上存在一點,其中,則,

,

依題意:,即

可得,解得(舍去).  

 所以上存在一點.   …………(13分)

18.本題主要考查函數與導數等基本知識,考查運用數學知識分析問題與解決問題的能力,

考查應用意識. 滿分13分.

  解:(Ⅰ)依題意,銷售價提高后為6000(1+)元/臺,月銷售量為臺…(2分)

               ……………………(4分)

.       ……………………(6分)

(Ⅱ),得

解得舍去).                      ……………………(9分)

時,取得最大值.

此時銷售價為元.

答:筆記本電腦的銷售價為9000元時,電腦企業(yè)的月利潤最大.…………………(13分)

19.本題主要考查直線與橢圓的位置關系、不等式的解法等基本知識,考查運算求解能力和分析問題、解決問題的能力. 滿分13分

解:(Ⅰ)因為橢圓的一個焦點是(1,0),所以半焦距=1.

因為橢圓兩個焦點與短軸的一個端點構成等邊三角形.

所以,解得

所以橢圓的標準方程為.  …(4分)                

(Ⅱ)(i)設直線聯立并消去得:.

,

,

.  ……………(5分)

A關于軸的對稱點為,得,根據題設條件設定點為,0),

,即.所以

即定點(1 , 0).                ……(8分)

(ii)由(i)中判別式,解得.     可知直線過定點 (1,0).

所以          ……………(10分)

,  令

,得,當時,.

上為增函數. 所以 ,

.故△OA1B的面積取值范圍是.           …(13分)

20. 本題主要考查函數的單調性、等差數列、不等式等基本知識,考查運用合理的推理證明解決問題的方法,考查分類與整合及化歸與轉化等數學思想. 滿分14分.

解:(Ⅰ)因為,

所以.           ………………(1分)

(i)當時,.

(ii)當時,由,得到,知在.

(iii)當時,由,得到,知在.

綜上,當時,遞增區(qū)間為;當時, 遞增區(qū)間為.                   …………(4分)

(Ⅱ)(i)因為,所以,即

,即.     ……………………………………(6分)

因為

時,

時,

所以.                  …………………………(8分)

又因為,

所以令,則

得到矛盾,所以不在數列中.    ………(9分)

(ii)充分性:若存在整數,使.

為數列中不同的兩項,則.

,所以.

是數列的第項.           ……………………(10分)

必要性:若數列中任意不同兩項之和仍為數列中的項,

,,(為互不相同的正整數)

,令,

得到 ,

所以,令整數,所以. ……(11 分)

下證整數.若設整數.令,

由題設取使

,所以

相矛盾,所以.

綜上, 數列中任意不同兩項之和仍為數列中的項的充要條件是存在整數,使.                          ……………………(14分)

21. (1)本題主要考查矩陣乘法、逆矩陣與變換等基本知識,考查運算求解能力, 滿分7分.

解: ,即

所以  得              …………(4分)

     即M=   , .

=1 ,  .          …………(7分)

(2)本題主要考查圓極坐標方程和直線參數方程等基本知識,考查運算求解能力,考查化歸與轉化思想. 滿分7分.

解:曲線的極坐標方程可化為,

其直角坐標方程為,即.      ………(2分)

直線的方程為.

所以,圓心到直線的距離          ………(5分)

所以,的最小值為.                 …………(7分)

(3)本題主要考查柯西不等式與不等式解法等基本知識,考查化歸與轉化思想. 滿分7分.

解:由柯西不等式:

. …………(3分)

因為

所以,即

因為的最大值是7,所以,得

時,取最大值,

所以.                         ……………………(7分)

 

 


同步練習冊答案