已知數(shù)列中...其前項和滿足.令.(Ⅰ)求數(shù)列的通項公式,(Ⅱ)若.求證:(),(Ⅲ)令().求同時滿足下列兩個條件的所有的值:①對于任意正整數(shù).都有,②對于任意的.均存在.使得時. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列中,,其前項和滿足.令.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,求證:).

查看答案和解析>>

已知數(shù)列中,,,其前項和滿足.令.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,求證:).

查看答案和解析>>

 

已知數(shù)列中,,,其前項和滿足.令.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,求證:);

(Ⅲ)令),求同時滿足下列兩個條件的所有的值:①對于任意正整數(shù),都有;②對于任意的,均存在,使得時,.

 

 

 

 

 

 

查看答案和解析>>

已知數(shù)列中,,,其前項和滿足,令
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令,求證:
① 對于任意正整數(shù),都有;
② 對于任意的,均存在,使得時,

查看答案和解析>>

已知數(shù)列中,,其前項和滿足,令

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)令,求證:

① 對于任意正整數(shù),都有;

② 對于任意的,均存在,使得時,

 

查看答案和解析>>

題 號

1

2

3

4

5

6

7

8

9

10

答 案

11. ;   12. ;   13.;    14.;     15..

三、解答題(本大題共6小題,共75分)

16.(本小題滿分12分)

已知向量,,).函數(shù)

的圖象的一個對稱中心與它相鄰的一條對稱軸之間的距離為,且過點(diǎn).

(Ⅰ)求函數(shù)的表達(dá)式;

(Ⅱ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間。

【解】(Ⅰ)

…………3′

由題意得周期,故.…………4′

又圖象過點(diǎn),∴

,而,∴,∴………6′

(Ⅱ)當(dāng)時,

∴當(dāng)時,即時,是減函數(shù)

當(dāng)時,即時,是增函數(shù)

∴函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是…………12′

 

17.(本小題滿分12分)

在某社區(qū)舉辦的《2008奧運(yùn)知識有獎問答比賽》中,甲、乙、丙三人同時回答一道有關(guān)奧運(yùn)知識的問題,已知甲回答這道題的概率是,甲、丙兩人都回答錯的概率是,乙、丙兩人都回答對的概率是.

(Ⅰ)求乙、丙兩人各自回答這道題對的概率;

(Ⅱ)用表示回答該題對的人數(shù),求的分布列和數(shù)學(xué)期望.

【解】(Ⅰ)記“甲回答對這道題”、“ 乙回答對這道題”、“丙回答對這道題”分別為事件、,則,且有,即

,.…………6′

(Ⅱ)由(Ⅰ),.

的可能取值為:、、.

;

;

;

.…………9′

的分布列為

的數(shù)學(xué)期望.…………12′

 

18.(本小題滿分12分)如圖,已知正三棱柱各棱長都為,為棱上的動點(diǎn)。

(Ⅰ)試確定的值,使得;(Ⅱ)若,求二面角的大。

(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)到面的距離。

【法一】(Ⅰ)當(dāng)時,作上的射影. 連結(jié).

平面,∴,∴的中點(diǎn),又,∴也是的中點(diǎn),

.  反之當(dāng)時,取的中點(diǎn),連接、.

為正三角形,∴.   由于的中點(diǎn)時,

平面,∴平面,∴.……4′

(Ⅱ)當(dāng)時,作上的射影. 則底面.

上的射影,連結(jié),則.

為二面角的平面角。

又∵,∴,∴.

,又∵,∴.

,∴的大小為.…8′

(Ⅲ)設(shè)到面的距離為,則,∵,∴平面,

即為點(diǎn)到平面的距離,

,∴.

,解得.即到面的距離為.……12′

【法二】以為原點(diǎn),軸,過點(diǎn)與垂直的直線為軸,

軸,建立空間直角坐標(biāo)系,如圖所示,

設(shè),則、、.

(Ⅰ)由,

,∴,即的中點(diǎn),

也即時,.…………4′

(Ⅱ)當(dāng)時,點(diǎn)的坐標(biāo)是.  取.

.

是平面的一個法向量。

又平面的一個法向量為.

,∴二面角的大小是.……8′

(Ⅲ)設(shè)到面的距離為,則,∴到面的距離為.…12′

19.(本小題滿分12分)

已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間和極值;

(Ⅱ)若對滿足的任意實數(shù)恒成立,求實數(shù)的取值范圍(這里是自然對數(shù)的底數(shù));

(Ⅲ)求證:對任意正數(shù)、、、,恒有

.

【解】(Ⅰ)

的增區(qū)間為,減區(qū)間為.

極大值為,極小值為.…………4′

(Ⅱ)原不等式可化為由(Ⅰ)知,時,的最大值為.

的最大值為,由恒成立的意義知道,從而…8′

(Ⅲ)設(shè)

.

∴當(dāng)時,,故上是減函數(shù),

又當(dāng)、、、是正實數(shù)時,

.

的單調(diào)性有:,

.…………12′

 

20.(本小題滿分13分)

如圖,已知曲線與拋物線的交點(diǎn)分別為、,曲線和拋物線在點(diǎn)處的切線分別為、,且、的斜率分別為、.

(Ⅰ)當(dāng)為定值時,求證為定值(與無關(guān)),并求出這個定值;

(Ⅱ)若直線軸的交點(diǎn)為,當(dāng)取得最小值時,求曲線的方程。

【解】(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為,

得:

,∴…………2′

,∴ …………4′

又∵,,∴.


同步練習(xí)冊答案