(Ⅱ)由.得. 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)如圖1,A,B,C是平面內(nèi)的三個(gè)點(diǎn),且A與B不重合,P是平面內(nèi)任意一點(diǎn),若點(diǎn)C在直線AB上,試證明:存在實(shí)數(shù)λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如圖2,設(shè)G為△ABC的重心,PQ過G點(diǎn)且與AB、AC(或其延長(zhǎng)線)分別交于P,Q點(diǎn),若
AP
=m
AB
,
AQ
=n
AC
,試探究:
1
m
+
1
n
的值是否為定值,若為定值,求出這個(gè)定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

(Ⅰ)求證:
C
m
n
=
n
m
C
m-1
n-1

(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實(shí)我們常借用構(gòu)造等式,對(duì)同一個(gè)量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請(qǐng)利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)如圖1,A,B,C是平面內(nèi)的三個(gè)點(diǎn),且A與B不重合,P是平面內(nèi)任意一點(diǎn),若點(diǎn)C在直線AB上,試證明:存在實(shí)數(shù)λ,使得:
(Ⅱ)如圖2,設(shè)G為△ABC的重心,PQ過G點(diǎn)且與AB、AC(或其延長(zhǎng)線)分別交于P,Q點(diǎn),若,,試探究:的值是否為定值,若為定值,求出這個(gè)定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

(Ⅰ)求證:;
(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實(shí)我們常借用構(gòu)造等式,對(duì)同一個(gè)量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請(qǐng)利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

9、由命題“存在x∈R,使x2+2x+m≤0”是假命題,求得m的取值范圍是(a,+∞),則實(shí)數(shù)a的值是
1

查看答案和解析>>


同步練習(xí)冊(cè)答案