已知△ABC的面積S滿足3≤S≤3且的夾角為. 查看更多

 

題目列表(包括答案和解析)

已知△ABC的面積S滿足3≤S≤3的夾角為α,

(Ⅰ)求α的取值范圍;

(Ⅱ)求f(α)=sin2α+2sinαcosα+3cos2α的最小值.

查看答案和解析>>

已知△ABC的面積S滿足3≤S≤3,且·=6,的夾角為θ.

(1)求θ的取值范圍;

(2)求函數(shù)f(θ)=sin2θ+2sinθ·cosθ+3cos2θ的最大值.

查看答案和解析>>

已知△ABC的面積S滿足3≤S≤3,且·=6,的夾角為θ.

(1)求θ的取值范圍;

(2)求函數(shù)f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.

查看答案和解析>>

 

已知△ABC的面積S滿足3≤S≤3,且·=6,的夾角為

(1)求的取值范圍;

(2)若函數(shù)f()=sin2+2sincos+3cos2,求f()的最小值.

                                                              

 

 

 

 

 

 

查看答案和解析>>

已知△ABC的面積S滿足3≤S≤3,且·=6,的夾角為α

(1)求α的取值范圍

(2)若函數(shù)f(α)=sin2α+2sinαcosα+3cos2α,求f(α)的最小值.

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

2,4,6

二、填空題(每小題4分,共4小題,滿分16分)

13.800    14.    15.625    16.②④

三、解答題(本大題共6小題,滿分74分)

17.解

   (Ⅰ)由題意知

……………………3分

……………………4分

的夾角

……………………6分

(Ⅱ)

……………………9分

有最小值。

的最小值是……………………12分

18.解:

(Ⅰ)設“一次取出3個球得4分”的事件記為A,它表示取出的球中有1個紅球和2個黑球的情況

……………………4分

(Ⅱ)由題意,的可能取值為3、4、5、6。因為是有放回地取球,所以每次取到紅球的概率為……………………6分

的分布列為

3

4

5

6

P

……………………10分

19.解:

連接BD交AC于O,則BD⊥AC,

連接A1O

在△AA1O中,AA1=2,AO=1,

∠A1AO=60°

∴A1O2=AA12+AO2-2AA1?Aocos60°=3

∴AO2+A1O2=A12

∴A1O⊥AO,由于平面AA1C1C

平面ABCD,

所以A1O⊥底面ABCD

∴以OB、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

……………………2分

(Ⅰ)由于

∴BD⊥AA1……………………4分

  (Ⅱ)由于OB⊥平面AA1C1C

∴平面AA1C1C的法向量

⊥平面AA1D

得到……………………6分

所以二面角D―A1A―C的平面角的余弦值是……………………8分

(Ⅲ)假設在直線CC1上存在點P,使BP//平面DA1C1

……………………9分

得到……………………10分

又因為平面DA1C1

?

即點P在C1C的延長線上且使C1C=CP……………………12分

法二:在A1作A1O⊥AC于點O,由于平面AA1C­1C⊥平面

ABCD,由面面垂直的性質定理知,A1O⊥平面ABCD,

又底面為菱形,所以AC⊥BD

    ……………………4分

    (Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

    ∴AO=AA1?cos60°=1

    所以O是AC的中點,由于底面ABCD為菱形,所以

    O也是BD中點

    由(Ⅰ)可知DO⊥平面AA1C

    過O作OE⊥AA1于E點,連接OE,則AA1⊥DE

    則∠DEO為二面角D―AA1―C的平面角

    ……………………6分

    在菱形ABCD中,AB=2,∠ABC=60°

    ∴AC=AB=BC=2

    ∴AO=1,DO=

    在Rt△AEO中,OE=OA?sin∠EAO=

    DE=

    ∴cos∠DEO=

    ∴二面角D―A1A―C的平面角的余弦值是……………………8分

    (Ⅲ)存在這樣的點P

    連接B1C,因為A1B1ABDC

    ∴四邊形A1B1CD為平行四邊形。

    ∴A1D//B1C

    在C1C的延長線上取點P,使C1C=CP,連接BP……………………10分

    因B­1­BCC1,……………………12分

    ∴BB1CP

    ∴四邊形BB1CP為平行四邊形

    則BP//B1C

    ∴BP//A1D

    ∴BP//平面DA1C1

    20.解:

    (Ⅰ)

    ……………………2分

    是增函數(shù)

    是減函數(shù)……………………4分

    ……………………6分

    (Ⅲ)(i)當時,,由(Ⅰ)知上是增函數(shù),在上是減函數(shù)

    ……………………7分

    又當時,所以的圖象在上有公共點,等價于…………8分

    解得…………………9分

    (ii)當時,上是增函數(shù),

    所以原問題等價于

    ∴無解………………11分

     

     

     

     

     

     


    同步練習冊答案