答案:C解析:當a=3時.直線l1:3x+2y+9=0.直線l2:3x+2y+4=0 查看更多

 

題目列表(包括答案和解析)

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知曲線C:x2+
y2
a
=1
,直線l:kx-y-k=0,O為坐標原點.
(1)討論曲線C所表示的軌跡形狀;
(2)當a=-1時,直線l與曲線C相交于兩點M,N,試問在曲線C上是否存在點Q,使得
OM
+
ON
OQ
?若存在,求實數(shù)λ的取值范圍;若不存在,請說明理由;
(3)若直線l與x軸的交點為P,當a>0時,是否存在這樣的以P為直角頂點的內(nèi)接于曲線C的等腰直角三角形?若存在,求出共有幾個?若不存在,請說明理由.

查看答案和解析>>

已知曲線C:x2+
y2
a
=1
,直線l:kx-y-k=0,O為坐標原點.
(1)討論曲線C所表示的軌跡形狀;
(2)當k=1時,直線l與曲線C相交于兩點M,N,若|MN|=
2
,求曲線C的方程;
(3)當a=-1時,直線l與曲線C相交于兩點M,N,試問在曲線C上是否存在點Q,使得
OM
+
ON
OQ
?若存在,求實數(shù)λ的取值范圍;若不存在,請說明理由.

查看答案和解析>>

己知在銳角△ABC中,角A、B、C的對邊分別為a、b、c,且tanA=
3
bc
b2+c2-a2

(I )求角A大;
(II)當a=
3
時,求B的取值范圍和b2+c2的取值范圍.

查看答案和解析>>

已知a,b,c分別是△ABC的三個內(nèi)角A,B,C的對邊,
2b-c
a
=
cosC
cosA

(1)求A的大。
(2)當a=
3
時,求b2+c2的取值范圍.

查看答案和解析>>


同步練習冊答案