由<1.得<0.即-2<x<3.所以B={x|-2<x<3}. 查看更多

 

題目列表(包括答案和解析)

如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?

(II)當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.

(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.

【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力   第一問要利用相似比得到結(jié)論。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

第二問,  

當且僅當

(3)令

∴當x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

對于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009;
(2)若{an}滿足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
(3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中bn=an+2n+
2009
2n
,問是否存在最小的自然數(shù)n(n∈N*),使得對一切自然數(shù)m≥n,都有bm>2009?請說明理由.

查看答案和解析>>

 對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x+1)f′(x)≥0,則有(  )

A.f(0)+f(-2)<2f(-1)       B.f(0)+f(-2)≤2f(-1)

C.f(0)+f(-2)>2f(-1)       D.f(0)+f(-2)≥2f(-1)

 

查看答案和解析>>

對于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009;
(2)若{an}滿足,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
(3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中,問是否存在最小的自然數(shù)n(n∈N*),使得對一切自然數(shù)m≥n,都有bm>2009?請說明理由.

查看答案和解析>>

對于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009;
(2)若{an}滿足數(shù)學(xué)公式,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
(3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中數(shù)學(xué)公式,問是否存在最小的自然數(shù)n(n∈N*),使得對一切自然數(shù)m≥n,都有bm>2009?請說明理由.

查看答案和解析>>


同步練習冊答案