21.解, 1)設(shè)點(diǎn)M(x0, y0)是函數(shù)y = f (x)的圖像與其反函數(shù)y = f -1 (x)的圖像的公點(diǎn).則有:y0=f (x0) . y0 = f -1 (x0).據(jù)反函數(shù)的意義有:x0 = f (y0). ---2分所以:y0 = f (x0)且同時(shí)有x0 = f (y0).若x0 < y0 .因?yàn)楹瘮?shù)y = f (x) 是其定義域上是增函數(shù).所以有:f (x0) < f (y0) .即y0 < x0 與 x0 < y0矛盾.這說(shuō)明x0 < y0是錯(cuò)誤的.同理可證x0 > y0也是錯(cuò)誤的.所以x0 = y0 .即函數(shù)y = f (x)的圖像與其反函數(shù)y = f -1 (x)的圖像有公共點(diǎn)在直線y = x上, ---5分2)構(gòu)造函數(shù)F (x)=a x-x因?yàn)镕′ (x)= a xlna - 1. ---6分令F′ (x)= a xlna - 1≥0. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)y=f(x)=ax+
1x+b
(a≠0)
的圖象過(guò)點(diǎn)(0,-1)且與直線y=-1有且只有一個(gè)公共點(diǎn);設(shè)點(diǎn)P(x0,y0)是函數(shù)y=f(x)圖象上任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心Q;
(3)證明:線段PM,PN長(zhǎng)度的乘積PM•PN為定值;并用點(diǎn)P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>

設(shè)函數(shù)y=數(shù)學(xué)公式的圖象過(guò)點(diǎn)(0,-1)且與直線y=-1有且只有一個(gè)公共點(diǎn);設(shè)點(diǎn)P(x0,y0)是函數(shù)y=f(x)圖象上任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心Q;
(3)證明:線段PM,PN長(zhǎng)度的乘積PM•PN為定值;并用點(diǎn)P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>

設(shè)函數(shù)y=f(x)=ax+
1
x+b
(a≠0)
的圖象過(guò)點(diǎn)(0,-1)且與直線y=-1有且只有一個(gè)公共點(diǎn);設(shè)點(diǎn)P(x0,y0)是函數(shù)y=f(x)圖象上任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心Q;
(3)證明:線段PM,PN長(zhǎng)度的乘積PM•PN為定值;并用點(diǎn)P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>


同步練習(xí)冊(cè)答案