(Ⅰ)求的值,(Ⅱ)求恰好打滿4局后比賽結束的概率. 查看更多

 

題目列表(包括答案和解析)

如果甲乙兩個乒乓球選手進行比賽,而且他們在每一局中獲勝的概率都是,規(guī)定使用“七局四勝制”,即先贏四局者勝.

(1)試分別求甲打完4局、5局才獲勝的概率;

(2)設比賽局數(shù)為ξ,求ξ的分布列及期望.

 

查看答案和解析>>

甲、乙、丙三人按下面的規(guī)則進行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進行到其中一人連勝兩局或打滿6局時停止.設在每局中參賽者勝負的概率均為,且各局勝負相互獨立.求:

(1)打滿3局比賽還未停止的概率;

(2)比賽停止時已打局數(shù)ξ的分布列與期望Eξ.

查看答案和解析>>

甲、乙、丙三人按下面的規(guī)則進行乒乓球比賽: 第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進行比賽,而前一局的失敗者輪空. 比賽按這種規(guī)則一直進行到其中一人連勝兩局或打滿6局時停止. 設在每局中參賽者勝負的概率均為, 且各局勝負相互獨立.  求:

(Ⅰ)打滿4局比賽還未停止的概率;

    (Ⅱ)比賽停止時已打局數(shù)的分布列與期望.

查看答案和解析>>

如果甲乙兩個乒乓球選手進行比賽,而且他們在每一局中獲勝的概率都是,規(guī)定使用“七局四勝制”,即先贏四局者勝.
(1)試分別求甲打完4局、5局才獲勝的概率;
(2)設比賽局數(shù)為,求的分布列及期望。

查看答案和解析>>

乒乓球比賽采用7局4勝制,若甲、乙兩人實力相當,獲勝的概率各占一半,則打完5局后仍不能結束比賽的概率等于_____________________.

查看答案和解析>>

一、     選擇題: DCCBC  ABAAD  BB

二、     填空題:13. ;14. ;15. ;16.

三、 解答題:

17.(10分)解:(Ⅰ)由已知得

由余弦定理得,即…………………………3分

因為銳角△ABC中,A+B+C=p,,所以,則

………………………6分

(Ⅱ),則.將,代入余弦定理:解得.…10分

18. (12分)解:(Ⅰ)依題意,當甲連勝局或乙連勝局時,第二局打完時比賽結束.

.   解得.  .…6分                          

(Ⅱ)根據比賽規(guī)則可知,若恰好打滿4局后比賽結束,必須是前兩局打成平局,第三、第四局只能甲全勝或乙全勝.所求概率P=…………………12分

19.(12分)解:(Ⅰ),,

,又,

.    …………………………………………………………6分

(Ⅱ)過垂足為,則

,垂足為,連結EF由三垂線定理得;

是所求二面角的平面角.……………………9分
設,

中,由

,所以

中,,,

故所求二面角的為.…………………………………………12分

 

20(12分)解: (Ⅰ) …………2分

 ∵在區(qū)間上是增函數(shù) 

…………4分

(Ⅱ)∵ ∴對稱軸為 …………6分

∴當取到最大值  ∴  ∴…………8分

的增區(qū)間為   減區(qū)間為…………12分

21.(12分) 解:(Ⅰ)由題意知,

易得    ………………………………4分

(Ⅱ)

∴當時,,

    ………………8分

∴當時,取最大值是,又

,即………………12分

22. (12分) 解:(Ⅰ)由題意:∵|PA|=|PB|且|PB|+|PF|=r=8

∴|PA|+|PF|=8>|AF|    ∴P點軌跡為以A、F為焦點的橢圓…………………………2分

設方程為

(Ⅱ)假設存在滿足題意的直線l,若l斜率不存在,易知

不符合題意,故其斜率存在,設為k,設

 

   ………6分

 

 

………8分

………10分

解得   代入驗證成立

………12分

 

 

 

 


同步練習冊答案