從而.-------------5分 查看更多

 

題目列表(包括答案和解析)

從以下兩個小題中選做一題(只能做其中一個,做兩個按得分最低的記分).(甲)一水池有2個進水口,1個出水口,每口進出水速度如圖甲、乙所示.某天0點到6點,該水池的蓄水量如圖丙所示.(至少打開一個水口)

給出以下3個論斷:①0點到3點只進水不出水;②3點到4點不進水只出水;③4點到6點不進水不出水.則一定能確定正確的論斷序號是________.

(乙)深圳市的一種特色水果上市時間僅能持續(xù)5個月,預(yù)測上市初期和后期會因供不應(yīng)求使價格呈連續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求使價格連續(xù)下跌,現(xiàn)有三種價格模擬函數(shù).①f(x)p·qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p

(以上三式中p,q均為常數(shù),且q>1,x=0表示4月1日,x=1表示5月1日,依次類推).

(1)為準確研究其價格走勢,應(yīng)選________種價格模擬函數(shù).

(2)若f(x)=4,f(2)=6,預(yù)測該果品在________月份內(nèi)價格下跌.

查看答案和解析>>

( (本題滿分12分)
在一次抗洪搶險中,準備用射擊的方法引爆從橋上游漂流而下的一巨大汽油罐.已知
只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射擊命中率都是.,每次命中與否互相獨立.
(1)求油罐被引爆的概率。
(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為ξ,求ξ的分布列及ξ的數(shù)學期望。

查看答案和解析>>

( (本題滿分12分)

在一次抗洪搶險中,準備用射擊的方法引爆從橋上游漂流而下的一巨大汽油罐.已知

只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射擊命中率都是.,每次命中與否互相獨立.

(1)求油罐被引爆的概率。

(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為ξ,求ξ的分布列及ξ的數(shù)學期望。

 

查看答案和解析>>

(本小題滿分12分)

在一次抗洪搶險中,準備用射擊的方法引爆從橋上游漂流而下的一巨大汽油罐.已知只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射擊命中率都是,每次命中與否互相獨立.

  (1) 求油罐被引爆的概率.

  (2) 如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為ξ,求ξ的分布列及ξ的數(shù)學期望。

 

查看答案和解析>>


(本題滿分12分)某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期
 
1月10日
 
2月10日
 
3月10日
 
4月10日
 
5月10日
 
6月10日
 
晝夜溫差
 
10
 
11
 
13
 
12
 
8
 
6
 
就診人數(shù)(個)
 
22
 
25
 
29
 
26
 
16
 
12
 
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗。
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性www.ks5u.com回歸方程是否理想?
(參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,

查看答案和解析>>


同步練習冊答案