題目列表(包括答案和解析)
( 14 分) 受轎車在保修期內(nèi)維修費(fèi)等因素的影響, 企業(yè)產(chǎn)生每輛轎車的利潤(rùn)與該轎車首次出現(xiàn)故障的時(shí)間有關(guān),某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為 2 年,現(xiàn)從該廠已售出的兩 種品牌轎車中隨機(jī)抽取 50 輛,統(tǒng)計(jì)數(shù)據(jù)如下:
將頻率視為概率,解答下列問(wèn)題:
(I)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(II)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛甲品牌轎車的利潤(rùn)為 ,生產(chǎn)一輛乙品牌轎 車的利潤(rùn)為 ,分別求 , 的分布列 ;
(III)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一 種品牌轎 車,若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種品牌的轎車?說(shuō)明理由.
(本小題滿分14分)
因發(fā)生意外交通事故,一輛貨車上的某種液體泄漏到一漁塘中.為了治污,根據(jù)環(huán)保部門的建議,現(xiàn)決定在漁塘中投放一種可與污染液體發(fā)生化學(xué)反應(yīng)的藥劑.已知每投放,且個(gè)單位的藥劑,它在水中釋放的濃度(克/升)隨著時(shí)間(天)變化的函數(shù)關(guān)系式近似為,其中.
若多次投放,則某一時(shí)刻水中的藥劑濃度為每次投放的藥劑在相應(yīng)時(shí)刻所釋放的濃度之和.根據(jù)經(jīng)驗(yàn),
當(dāng)水中藥劑的濃度不低于4(克/升)時(shí),它才能起到有效治污的作用.
(Ⅰ)若一次投放4個(gè)單位的藥劑,則有效治污時(shí)間可達(dá)幾天?
(Ⅱ)若第一次投放2個(gè)單位的藥劑,6天后再投放個(gè)單位的藥劑,要使接下來(lái)的4天中能夠持續(xù)有效治污,試求的最小值(精確到0.1,參考數(shù)據(jù):取1.4).
(本小題滿分14分)
有一隧道既是交通擁擠地段,又是事故多發(fā)地段.為了保證安全,交通部門規(guī)定,隧道內(nèi)的車距正比于車速的平方與車身長(zhǎng)的積,且車距不得小于一個(gè)車身長(zhǎng)(假設(shè)所有車身長(zhǎng)均為).而當(dāng)車速為時(shí),車距為1.44個(gè)車身長(zhǎng).
⑴求通過(guò)隧道的最低車速;
⑵在交通繁忙時(shí),應(yīng)規(guī)定怎樣的車速,可以使隧道在單位時(shí)段內(nèi)通過(guò)的汽車數(shù)量最多?
1 | 4 |
為了解高中一年級(jí)學(xué)生身高情況,某校按10%的比例對(duì)全校700名高中一年級(jí)學(xué)生按性別進(jìn)行抽樣檢查,測(cè)得身高頻數(shù)分布表如下表1、表2.
表1:男生身高頻數(shù)分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
頻數(shù) |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高頻數(shù)分布表
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
頻數(shù) |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求該校男生的人數(shù)并完成下面頻率分布直方圖;
(II)估計(jì)該校學(xué)生身高在的概率;
(III)從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185190cm之間的概率。
【解析】第一問(wèn)樣本中男生人數(shù)為40 ,
由分層抽樣比例為10%可得全校男生人數(shù)為400
(2)中由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在的頻率
故由估計(jì)該校學(xué)生身高在的概率
(3)中樣本中身高在180185cm之間的男生有4人,設(shè)其編號(hào)為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號(hào)為⑤⑥從上述6人中任取2人的樹狀圖,故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率
由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在
的頻率-----------------------------------------6分
故由估計(jì)該校學(xué)生身高在的概率.--------------------8分
(3)樣本中身高在180185cm之間的男生有4人,設(shè)其編號(hào)為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號(hào)為⑤⑥從上述6人中任取2人的樹狀圖為:
--10分
故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com