13. 14. 查看更多

 

題目列表(包括答案和解析)

(
1
4
)-
1
2
(
4ab-1
)
3
(0.1-2)(a3b-3)
1
2
=
 

查看答案和解析>>

(14分)設(shè)A、B分別為橢圓的左、右頂點(diǎn),()為橢圓上一點(diǎn),橢圓的長半軸的長等于焦距.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),若直線AP,BP分別與橢圓相交于異于A、B的點(diǎn)M、N,證明在以MN為直徑的圓內(nèi).

查看答案和解析>>

(14分)已知函數(shù)

(Ⅰ)求的值域;

       (Ⅱ)設(shè),函數(shù).若對任意,總存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

(14分)設(shè)A、B分別為橢圓的左、右頂點(diǎn),()為橢圓上一點(diǎn),橢圓的長半軸的長等于焦距.

  (Ⅰ)求橢圓的方程;

  (Ⅱ)設(shè),若直線AP,BP分別與橢圓相交于異于A、B的點(diǎn)M、N,

求證:為鈍角.

查看答案和解析>>

(14分)已知函數(shù),( x>0).

(I)當(dāng)0<a<b,且f(a)=f(b)時,求證:ab>1;

(II)是否存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請說明理由.

(III)若存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域為 [a,b]時,值域為 [ma,mb]

(m≠0),求m的取值范圍.

查看答案和解析>>

一、填空題:

1. ,均有x 2+ x +1≥0  2.第一象限  3.充分而不必要條件  4. 0.01

5. 4   6. 2550   7.    8.①④  9.  R(S1+S2+S3+S4)

10. ,11.   12.1  13.  14.

二、解答題:

15.(Ⅰ)因為各組的頻率和等于1,故第四組的頻率:

     3′

直方圖如右所示        6′

(Ⅱ)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,頻率和為 所以,抽樣學(xué)生成績的合格率是%..       9 ′

利用組中值估算抽樣學(xué)生的平均分

=71

估計這次考試的平均分是71分                                            12′      

16.(1)證明:連結(jié)BD.

在長方體中,對角線.

E、F為棱AD、AB的中點(diǎn),

 .

 .                           

B1D1平面,平面,

  EF∥平面CB1D1.                       6′

(2) 在長方體中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1,

 AA1B1D1.

在正方形A1B1C1D1中,A1C1B1D1,

 B1D1⊥平面CAA1C1.                 

B1D1平面CB1D1

*平面CAA1C1⊥平面CB1D1.                    13′

17. (1)由                  4′

       由正弦定理得

             

                                       6′

                    8′

 (2)

     =                                  10′

 =                                          12′

  由(1)得

                            15′

18.(1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2=a2-b2,由條件知a-c=,=,

∴a=1,b=c=,

故C的方程為:y2+=1                   5′

(2)由=λ,

∴λ+1=4,λ=3 或O點(diǎn)與P點(diǎn)重合=              7′

當(dāng)O點(diǎn)與P點(diǎn)重合=時,m=0

當(dāng)λ=3時,直線l與y軸相交,則斜率存在。

設(shè)l與橢圓C交點(diǎn)為A(x1,y1),B(x2,y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km2-4(k2+2)(m2-1)=4(k22m2+2)>0 (*)

x1+x2=, x1x2=                           11′

∵=3 ∴-x1=3x2

消去x2,得3(x1+x22+4x1x2=0,∴3()2+4=0

 

整理得4k2m22m2-k2-2=0                          13′

m2=時,上式不成立;m2≠時,k2=,

因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易驗證k2>2m2-2成立,所以(*)成立

即所求m的取值范圍為(-1,-)∪(,1)∪{0}                 16′

19. ⑴由題意得                  4′

(n≥2),

又∵

數(shù)列是以為首項,以2為公比的等比數(shù)列。        8′

[則)]

⑵由

,                                   11′

          13′

 

                                               16′

20. (1)設(shè)

                ∴     ∴

           由

           又∵    ∴    

                               6′ 

           于是

;   由

           故函數(shù)的單調(diào)遞增區(qū)間為

單調(diào)減區(qū)間為                              10′

(2)證明:據(jù)題意x1<x2<x3,

由(1)知f (x1)>f (x2)>f (x3),

          14′

即ㄓ是鈍角三角形.                                            18′

 

 

 

 

第Ⅱ部分  加試內(nèi)容

一.必答題:

1.(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知                       4′

   (2)ξ可取1,2,3,4.

    ,

    ;    8′

    故ξ的分布列為

ξ

1

2

3

4

P

                                                             

   

答:ξ的數(shù)學(xué)期望為                                      10′

2.(1)由

求得                               3′

(2)猜想                                     5′

證明:①當(dāng)n=1時,猜想成立。                            6′

②設(shè)當(dāng)n=k時時,猜想成立,即,      7′

則當(dāng)n=k+1時,有,

所以當(dāng)n=k+1時猜想也成立                                9′

③綜合①②,猜想對任何都成立。                  10′

二、選答題:

3.(1)∵DE2=EF?EC,

          ∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.----5′

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

∵弦AD、BC相交于點(diǎn)E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.   10′

4.(矩陣與變換)

解:.

,                                                5′

橢圓的作用下的新曲線的方程為         10′

5.(1)直線的參數(shù)方程為,即.         5′

   (2)把直線代入,

,,
則點(diǎn)兩點(diǎn)的距離之積為.                   10′

6.

        7′

當(dāng)且僅當(dāng)  且

 F有最小值                                         10′

 

 


同步練習(xí)冊答案