所以,即解得--------13分 查看更多

 

題目列表(包括答案和解析)

((本小題共13分)

若數(shù)列滿足,數(shù)列數(shù)列,記=.

(Ⅰ)寫出一個(gè)滿足,且〉0的數(shù)列

(Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;

(Ⅲ)對(duì)任意給定的整數(shù)n(n≥2),是否存在首項(xiàng)為0的E數(shù)列,使得=0?如果存在,寫出一個(gè)滿足條件的E數(shù)列;如果不存在,說明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。

(答案不唯一,0,1,0,1,0也是一個(gè)滿足條件的E的數(shù)列A5

(Ⅱ)必要性:因?yàn)镋數(shù)列A5是遞增數(shù)列,所以.所以A5是首項(xiàng)為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因?yàn)閍1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結(jié)論得證。

 

 

查看答案和解析>>

在改革開放30年紀(jì)念活動(dòng)中,某校團(tuán)支部隨即抽取了50名學(xué)生,讓他們?cè)谝?guī)定的時(shí)間內(nèi)舉例說明我國在改革開放以來所取得的輝煌成就,下面是根據(jù)調(diào)查結(jié)果制作出來的頻數(shù)分布統(tǒng)計(jì)表和頻數(shù)分布直方圖的一部分.根據(jù)統(tǒng)計(jì)圖表中提供的信息解答下列問題:
(1)補(bǔ)全頻數(shù)分布統(tǒng)計(jì)表和頻數(shù)分布直方圖;
(2)如果將抽樣調(diào)查的結(jié)果制成扇形統(tǒng)計(jì)圖,那么4≤x<7這一組中人數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù)是
度;
(3)若全校共有1000名學(xué)生,試估計(jì)在相同的規(guī)定時(shí)間內(nèi),舉例數(shù)7≤x<13的學(xué)生約有多少人?

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時(shí),,故. …………5分

所以.                 …………6分

(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點(diǎn),

當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案