題目列表(包括答案和解析)
設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足
【解析】(1)解:設點P的坐標為.由題意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設點P的坐標為.
由條件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依題意,直線OP的方程為,設點P的坐標為.
由P在橢圓上,有
因為,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
在△中,∠,∠,∠的對邊分別是,且 .
(1)求∠的大;(2)若,,求和的值.
【解析】第一問利用余弦定理得到
第二問
(2) 由條件可得
將 代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
如圖,已知圓錐體的側(cè)面積為,底面半徑和互相垂直,且,是母線的中點.
(1)求圓錐體的體積;
(2)異面直線與所成角的大小(結(jié)果用反三角函數(shù)表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得,故
從而體積.2中取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得,
故從而體積.
(2)如圖2,取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.
在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
則,所以異面直線SO與P成角的大arctan
已知△的內(nèi)角所對的邊分別為且.
(1) 若, 求的值;
(2) 若△的面積 求的值.
【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關系等基礎知識,考查運算求解能力。第一問中,得到正弦值,再結(jié)合正弦定理可知,,得到(2)中即所以c=5,再利用余弦定理,得到b的值。
解: (1)∵, 且, ∴ . 由正弦定理得, ∴.
(2)∵ ∴. ∴c=5
由余弦定理得,
∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com