題目列表(包括答案和解析)
已知均為正數(shù),,則的最小值是 ( )
A. B. C. D.
第Ⅱ卷 (非選擇題 共90分)
二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。
設(shè) ,則的最大值.為( )
A. B. C. D.
第II卷(非選擇題 共70分)
已知,且,則 ( )
A. B.
C. D.
第II卷(非選擇題,共60分)
正項數(shù)列的前n項的乘積,則數(shù)列的前n項和中的最大值是 ( )
A. B. C. D.
第Ⅱ卷(非選擇題,共90分)
設(shè)函數(shù),則滿足方程根的個數(shù)是( )
A.1 個 B.2 個 C.3 個 D.無數(shù)個
第Ⅱ卷 非選擇題(共100分)
一、選擇題:
1―5 DACBC 6―10 BDCAC 11―12 DA
二、填空題:
13.6或―1 14. 15.180 16.①③
三、解答題:
17.(本小題滿分10分)
解:
………………4分
(2)
………………10分
18.(本小題滿分12分)
解:(1)設(shè)中國隊以3:1贏得日本隊為事件A
則
答:中國隊以3:1贏得日本隊的概率為 ………………4分
(2)設(shè)中方贏下比賽為事件B
則
答:中方贏下比賽的 ………………12分
19.(本小題滿分12分)
解:(I)由題意
。 ………………6分
(2)
20.(14分)解法一:(1)取PC中點為G,連GF,則GF//CD,AE//CD且
GF=AE= ∴GF//AE,AEGF是平行四邊形
∴AF//EG,∵EG平面PEC,
AF//平面PEC. ………………3分
(2)∵AB⊥AP,AB⊥AD,∴AB⊥平面PAD
∴AB⊥PD∴CD⊥PD
∵CD⊥AD ∴∠ADP為二面角P―CD―B的平面角,∴∠ADP=45°
∵PA⊥AD,∴PA⊥平面ABCD,
延長DA,CE交于一點H,連結(jié)PH,則AH=3,
∴PH⊥PD,又PH⊥CD,∴PH⊥平面PCD,
∴∠DPC為平面PEC和平面PAD所成的二面角的平面角, …………6分
(3)∵VD―PEC=VP―DEC,∴D到平面PEC的距離為 …………12分
解法二:∵AB⊥AP,AB⊥AD,∴AB⊥平面PAD
∴AB⊥PD ∴CD⊥PD
∵CD⊥AD ∴∠ADP為二面角P―CD―B的平面角,∴∠ADP=45°
∵PA⊥AD,∴PA⊥平面ABCD ………………3分
(1)以AB為x軸,AD為y軸,AP為z軸建立空間直角坐標系。
(2)由題意知,平面PAD的法向量
∴平面PEC與平面PAD所成銳二面角的大小為30° …………8分
(3)由……12分
21.(本小題滿分12分)
解:(1)
x
―2
(-2,-1)
―1
(-1,1)
―1
(1,2)
2
+
0
―
0
+
增
減
增
………………6分
(2)存在,
22.(本小題滿分12分)
解:(1)由
可求得⊙O′的方程為 ………………3分
∴AB為⊙O′的直徑,
直線BD的方程為 ………………6分
(2)設(shè),
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com