聯(lián)立⑤⑥⑦解得: 8 2分 查看更多

 

題目列表(包括答案和解析)

第六部分 振動和波

第一講 基本知識介紹

《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。

一、簡諧運動

1、簡諧運動定義:= -k             

凡是所受合力和位移滿足①式的質(zhì)點,均可稱之為諧振子,如彈簧振子、小角度單擺等。

諧振子的加速度:= -

2、簡諧運動的方程

回避高等數(shù)學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。

依據(jù):x = -mω2Acosθ= -mω2

對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:

2 = k 

這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關(guān)規(guī)律。從圖1不難得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相關(guān)名詞:(ωt +φ)稱相位,φ稱初相。

運動學參量的相互關(guān)系:= -ω2

A = 

tgφ= -

3、簡諧運動的合成

a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同頻率振動合成。當質(zhì)點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經(jīng)構(gòu)成了質(zhì)點在二維空間運動的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為

+-2cos(φ2-φ1) = sin22-φ1)

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;

當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;

當φ2-φ1取其它值,軌跡將更為復(fù)雜,稱“李薩如圖形”,不是簡諧運動。

c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現(xiàn)象。

4、簡諧運動的周期

由②式得:ω=  ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以

T = 2π                                                      

5、簡諧運動的能量

一個做簡諧運動的振子的能量由動能和勢能構(gòu)成,即

mv2 + kx2 = kA2

注意:振子的勢能是由(回復(fù)力系數(shù))k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復(fù)計量。

6、阻尼振動、受迫振動和共振

和高考要求基本相同。

二、機械波

1、波的產(chǎn)生和傳播

產(chǎn)生的過程和條件;傳播的性質(zhì),相關(guān)參量(決定參量的物理因素)

2、機械波的描述

a、波動圖象。和振動圖象的聯(lián)系

b、波動方程

如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質(zhì)點的振動方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

這個方程展示的是一個復(fù)變函數(shù)。對任意一個時刻t ,都有一個y(x)的正弦函數(shù),在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。

3、波的干涉

a、波的疊加。幾列波在同一介質(zhì)種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。

b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質(zhì)中的疊加將形成一種特殊形態(tài):振動加強的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。

我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。

當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P點便出現(xiàn)兩個頻率相同、初相不同的振動疊加問題(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有

r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 ;

r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。

4、波的反射、折射和衍射

知識點和高考要求相同。

5、多普勒效應(yīng)

當波源或者接受者相對與波的傳播介質(zhì)運動時,接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應(yīng)的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質(zhì)的傳播速度v是恒定不變的)——

a、只有接收者相對介質(zhì)運動(如圖3所示)

設(shè)接收者以速度v1正對靜止的波源運動。

如果接收者靜止在A點,他單位時間接收的波的個數(shù)為f ,

當他迎著波源運動時,設(shè)其在單位時間到達B點,則= v1 ,、

在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波

n = 

顯然,在單位時間內(nèi),接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f。即

f

顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。

b、只有波源相對介質(zhì)運動(如圖4所示)

設(shè)波源以速度v2正對靜止的接收者運動。

如果波源S不動,在單位時間內(nèi),接收者在A點應(yīng)接收f個波,故S到A的距離:= fλ 

在單位時間內(nèi),S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長

λ′= 

而每個波在介質(zhì)中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>

f2 = 

當v2背離接收者,或有一定夾角的討論,類似a情形。

c、當接收者和波源均相對傳播介質(zhì)運動

當接收者正對波源以速度v1(相對介質(zhì)速度)運動,波源也正對接收者以速度v2(相對介質(zhì)速度)運動,我們的討論可以在b情形的過程上延續(xù)…

f3 =  f2 = 

關(guān)于速度方向改變的問題,討論類似a情形。

6、聲波

a、樂音和噪音

b、聲音的三要素:音調(diào)、響度和音品

c、聲音的共鳴

第二講 重要模型與專題

一、簡諧運動的證明與周期計算

物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。

模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復(fù)力與位移關(guān)系是否滿足定義式①,值得注意的是,回復(fù)力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復(fù)力系數(shù)k就有了,求周期就是順理成章的事。

本題中,可設(shè)汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復(fù)力

ΣF = ρg2xS = x

由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。

周期T = 2π= 2π

答:汞柱的周期為2π 。

學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉(zhuǎn)動,在滾輪上覆蓋一塊均質(zhì)的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質(zhì)量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。

思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結(jié)合求兩處彈力→ú求摩擦力合力…

答案:木板運動周期為2π 。

鞏固應(yīng)用:如圖7所示,三根長度均為L = 2.00m地質(zhì)量均勻直桿,構(gòu)成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉(zhuǎn)軸轉(zhuǎn)動。桿AB是一導軌,一電動松鼠可在導軌上運動,F(xiàn)觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。

解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設(shè)松鼠的質(zhì)量為m ,即:

N = mg                            ①

再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉(zhuǎn)軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:

MN = Mf

現(xiàn)考查松鼠在框架上的某個一般位置(如圖7,設(shè)它在導軌方向上距C點為x),上式即成:

N·x = f·Lsin60°                 ②

解①②兩式可得:f = x ,且f的方向水平向左。

根據(jù)牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關(guān)系——

= -k

其中k =  ,對于這個系統(tǒng)而言,k是固定不變的。

顯然這就是簡諧運動的定義式。

答案:松鼠做簡諧運動。

評說:這是第十三屆物理奧賽預(yù)賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。

二、典型的簡諧運動

1、彈簧振子

物理情形:如圖8所示,用彈性系數(shù)為k的輕質(zhì)彈簧連著一個質(zhì)量為m的小球,置于傾角為θ

查看答案和解析>>

(2006?青浦區(qū)模擬)兩顆靠得很近的天體,離其他天體非常遙遠,靠相互吸引力一起以連線上某一點為圓心分別作圓周運動,從而保持兩者之間的距離不變,這樣的天體稱為“雙星’.現(xiàn)測得兩星中心距離為R,運動周期為T,求:雙星的總質(zhì)量.
解:設(shè)雙星的質(zhì)量分別為M1、M2.它們繞其連線上的O點以周期T作勻速圓周運動,由萬有引力定律及牛頓第二定律得:G
M1M2
R2
=M1(
T
)2R,G
M1M2
R2
=M2(
T
)2R
聯(lián)立解得:M1+M2=
8π2R2
GT2

上述結(jié)果是否正確?若正確,請列式證明:若錯誤,請求出正確結(jié)果.

查看答案和解析>>

第八部分 靜電場

第一講 基本知識介紹

在奧賽考綱中,靜電學知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。

如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關(guān)注的是電場中更本質(zhì)的內(nèi)容,關(guān)注的是縱向的深化和而非橫向的綜合。

一、電場強度

1、實驗定律

a、庫侖定律

內(nèi)容;

條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應(yīng)用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當?shù)亍熬C合應(yīng)用”的)。

b、電荷守恒定律

c、疊加原理

2、電場強度

a、電場強度的定義

電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。

b、不同電場中場強的計算

決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——

⑴點電荷:E = k

結(jié)合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——

⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。

⑶均勻帶電球殼

內(nèi)部:E內(nèi) = 0

外部:E = k ,其中r指考察點到球心的距離

如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):

E =  ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。

⑷無限長均勻帶電直線(電荷線密度為λ):E = 

⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ

二、電勢

1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即

U = 

參考點即電勢為零的點,通常取無窮遠或大地為參考點。

和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。

2、典型電場的電勢

a、點電荷

以無窮遠為參考點,U = k

b、均勻帶電球殼

以無窮遠為參考點,U = k ,U內(nèi) = k

3、電勢的疊加

由于電勢的是標量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。

4、電場力對電荷做功

WAB = q(UA - UB)= qUAB 

三、靜電場中的導體

靜電感應(yīng)→靜電平衡(狹義和廣義)→靜電屏蔽

1、靜電平衡的特征可以總結(jié)為以下三層含義——

a、導體內(nèi)部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導體表面。

b、導體是等勢體,表面是等勢面。

c、導體內(nèi)部沒有凈電荷;孤立導體的凈電荷在表面的分布情況取決于導體表面的曲率。

2、靜電屏蔽

導體殼(網(wǎng)罩)不接地時,可以實現(xiàn)外部對內(nèi)部的屏蔽,但不能實現(xiàn)內(nèi)部對外部的屏蔽;導體殼(網(wǎng)罩)接地后,既可實現(xiàn)外部對內(nèi)部的屏蔽,也可實現(xiàn)內(nèi)部對外部的屏蔽。

四、電容

1、電容器

孤立導體電容器→一般電容器

2、電容

a、定義式 C = 

b、決定式。決定電容器電容的因素是:導體的形狀和位置關(guān)系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容

⑴平行板電容器 C =  =  ,其中ε為絕對介電常數(shù)(真空中ε0 =  ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr =  。

⑵柱形電容器:C = 

⑶球形電容器:C = 

3、電容器的連接

a、串聯(lián)  = +++ … +

b、并聯(lián) C = C1 + C2 + C3 + … + Cn 

4、電容器的能量

用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以

E = q0U0 = C = 

電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。

對平行板電容器 E = E2 

認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結(jié)論適用于非勻強電場。

五、電介質(zhì)的極化

1、電介質(zhì)的極化

a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)

b、電介質(zhì)的極化:當介質(zhì)中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。

2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷

a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質(zhì),導體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。

b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。

第二講 重要模型與專題

一、場強和電場力

【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點的場強均為零。

【模型分析】這是一個疊加原理應(yīng)用的基本事例。

如圖7-5所示,在球殼內(nèi)取一點P ,以P為頂點做兩個對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設(shè)球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強分別為

ΔE1 = k

ΔE2 = k

為了弄清ΔE1和ΔE2的大小關(guān)系,引進錐體頂部的立體角ΔΩ ,顯然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強為零。

同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6  激發(fā)的合場強均為零。原命題得證。

【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。

【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強大小為

ΔE = k ,方向由P指向O點。

無窮多個這樣的面元激發(fā)的場強大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預(yù)見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設(shè)為ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直邊界線所在的平面。

〖學員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?

〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …

〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。

【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。

【模型分析】這里涉及兩個知識的應(yīng)用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結(jié)論,即“剝皮法則”),二是填補法。

將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設(shè) = r1 , = r2 ,則大球激發(fā)的場強為

E1 = k = kρπr1 ,方向由O指向P

“小球”激發(fā)的場強為

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。

【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。

〖學員思考〗如果在模型2中的OO′連線上O′一側(cè)距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?

〖解說〗上面解法的按部就班應(yīng)用…

〖答〗πkρq〔?〕。

二、電勢、電量與電場力的功

【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢U。

【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢

ΔU = k

環(huán)共有段,各段在P點形成的電勢相同,而且它們是標量疊加。

【答案】UP = 

〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結(jié)論為多少?如果這個總電量的分布不是均勻的,結(jié)論會改變嗎?

〖答〗UP =  ;結(jié)論不會改變。

〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?

〖解說〗(1)球心電勢的求解從略;

球內(nèi)任一點的求解參看圖7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ

注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心電勢的求解和〖思考〗相同;

球內(nèi)任一點的電勢求解可以從(1)問的求解過程得到結(jié)論的反證。

〖答〗(1)球心、球內(nèi)任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。

【相關(guān)應(yīng)用】如圖7-9所示,球形導體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。

【解析】由于靜電感應(yīng),球殼的內(nèi)、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。

根據(jù)靜電感應(yīng)的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結(jié)論,其在球心形成的電勢仍可以應(yīng)用定式,所以…

【答案】Uo = k - k + k 。

〖反饋練習〗如圖7-10所示,兩個極薄的同心導體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應(yīng)電荷量;(2)外球殼的電勢。

〖解說〗這是一個更為復(fù)雜的靜電感應(yīng)情形,B殼將形成圖示的感應(yīng)電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應(yīng)電荷分布都是不均勻的。

此外,我們還要用到一個重要的常識:接地導體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當我們以球心O點為對象,有

UO = k + k + k = 0

QB應(yīng)指B球殼上的凈電荷量,故 QB = 0

所以 QA = -q

☆學員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應(yīng)用定式。

基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>

【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構(gòu)成環(huán)形,故前面的定式不能直接應(yīng)用。若用元段分割→疊加,也具有相當?shù)睦щy。所以這里介紹另一種求電勢的方法。

每根細棒的電荷分布雖然復(fù)雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設(shè)為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設(shè)為U2);③bc棒對A、B兩點的貢獻相同(為U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 。

〖模型變換〗正四面體盒子由彼此絕緣的四塊導體板構(gòu)成,各導體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?

〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應(yīng)該想一點辦法——

我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導體板復(fù)制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構(gòu)成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構(gòu)成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為

U′= U1 + U2 + U3 + U4 

最后回到原來的單層盒子,中心電勢必為 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆學員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)

〖反饋練習〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。

〖解說〗這又是一個填補法的應(yīng)用。將半球面補成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。

從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。

而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。

考查P點,UP = k + U半球面

其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ 

以上的兩個關(guān)系已經(jīng)足以解題了。

〖答〗UQ = k - UP 。

【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?

【模型分析】電勢疊加和關(guān)系WAB = q(UA - UB)= qUAB的基本應(yīng)用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功與電勢的關(guān)系即可。

【答案】(1);(2)。 

【相關(guān)應(yīng)用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?

【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關(guān)系;第(3)問是在前兩問基礎(chǔ)上得出的必然結(jié)論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 

〖思考〗設(shè)三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?

〖解〗略。

〖答〗k(++)。

〖反饋應(yīng)用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個球?qū)㈤_始運動起來,試求中間這個小球的最大速度。

〖解〗設(shè)剪斷的是1、3之間的繩子,動力學分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應(yīng)該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設(shè)2球的速度為v ,1球和3球的速度為v′,則

動量關(guān)系 mv + 2m v′= 0

能量關(guān)系 3k = 2 k + k + mv2 + 2m

解以上兩式即可的v值。

〖答〗v = q 。

三、電場中的導體和電介質(zhì)

【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。

【模型分析】由于靜電感應(yīng),A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強為零的結(jié)論還是存在的);這里應(yīng)注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應(yīng)用無限大平板的場強定式。

為方便解題,做圖7-15,忽略邊緣效應(yīng),四個面的電荷分布應(yīng)是均勻的,設(shè)四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板內(nèi)部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板內(nèi)部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外側(cè)電量、A板內(nèi)側(cè)電量,B板內(nèi)側(cè)電量?、B板外側(cè)電量;(2)A板外側(cè)空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側(cè)空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。

〖學員思考〗如果兩板帶等量異號的凈電荷,兩板的外側(cè)空間場強等于多少?(答:為零。)

〖學員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?

〖學員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側(cè)受力·(方向相左),內(nèi)側(cè)受力·(方向向右),它們合成即可,結(jié)論為F = Q1Q2 ,排斥力!

【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質(zhì)表面的極化電荷。

【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強,故對電荷的分布情況肯定有影響。設(shè)真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有

Q1 + Q2 = Q

兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有

U1 = U2   =  ,即  = 

解以上兩式即可得Q1和Q2 。

場強可以根據(jù)E = 關(guān)系求解,比較常規(guī)(上下部分的場強相等)。

上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結(jié)論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關(guān)系是由兩個帶電面疊加的合效果。

【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。

〖思考應(yīng)用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導體表面接觸的介質(zhì)表面的極化電荷量。

〖解〗略。

〖答〗Q′= Q 。

四、電容器的相關(guān)計算

【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網(wǎng)絡(luò),試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網(wǎng)絡(luò)的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡(luò)的級數(shù),整個網(wǎng)絡(luò)A、B兩端的總電容是多少?

【模型分析】這是一個練習電容電路簡化基本事例。

第(1)問中,未給出具體級數(shù),一般結(jié)論應(yīng)適用特殊情形:令級數(shù)為1 ,于是

 +  =  解C′即可。

第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相關(guān)模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。

【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——

【答】約2.23μF 。

【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關(guān)K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。

【解說】這是一個考查電容器電路的基本習題,解題的關(guān)鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。

電量關(guān)系:++= 0

電勢關(guān)系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展應(yīng)用】如圖7-22所示,由n個單元組成的電容器網(wǎng)絡(luò),每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網(wǎng)絡(luò)的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?

【解說】這是一個結(jié)合網(wǎng)絡(luò)計算和“孤島現(xiàn)象”的典型事例。

(1)類似“物理情形1”的計算,可得 C = Ck = C

所以,從輸入端算起,第k單元后的電壓的經(jīng)驗公式為 Uk = 

再算能量儲存就不難了。

(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——

電量關(guān)系:Q1′= Q3

          Q2′+ Q3′= 

電勢關(guān)系: = 

從以上三式解得 Q1′= Q3′=  ,Q2′=  ,這樣系統(tǒng)的儲能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖學員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導線消耗的焦耳熱已不可忽略。)

☆第七部分完☆

查看答案和解析>>

第二部分  牛頓運動定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點

a、矢量性

b、獨立作用性:ΣF → a ,ΣFx → ax 

c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點

a、同性質(zhì)(但不同物體)

b、等時效(同增同減)

c、無條件(與運動狀態(tài)、空間選擇無關(guān))

第二講 牛頓定律的應(yīng)用

一、牛頓第一、第二定律的應(yīng)用

單獨應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。

應(yīng)用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達的驅(qū)動下,皮帶運輸機上方的皮帶以恒定的速度向右運動。現(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中(      

A、一段時間內(nèi),工件將在滑動摩擦力作用下,對地做加速運動

B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當工件相對皮帶靜止時,它位于皮帶上A點右側(cè)的某一點

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)

解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。

較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調(diào)節(jié)的特殊“物體”)

此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出

只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)

進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應(yīng)用

應(yīng)用要點:受力較少時,直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時,結(jié)合正交分解與“獨立作用性”解題。

在難度方面,“瞬時性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應(yīng)用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應(yīng)具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)

進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學處理復(fù)雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質(zhì)量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。

解說:當力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應(yīng)牛頓第二定律的“獨立作用性”列方程。

正交坐標的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當a>ctgθ時,張力T的結(jié)果會變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學生活動:用正交分解法解本節(jié)第2題“進階練習2”

進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個展示獨立作用性原理的經(jīng)典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領(lǐng)會用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知。現(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時調(diào)節(jié)”這一難點(從即將開始的運動來反推)。

知識點,牛頓第二定律的瞬時性。

答案:a = gsinθ ;a = gtgθ 。

應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應(yīng)用

要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時地運用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。

補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個長為L的均質(zhì)直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動;(2)不能拉動。

第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結(jié)論的化簡也麻煩一些。

第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動,結(jié)論不變。

若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。

應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質(zhì)量也不計,為使三個物體無相對滑動,水平推力F應(yīng)為多少?

解說:

此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。

解:此時,m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當m1 ≤ m2時,沒有適應(yīng)題意的F′;當m1 > m2時,適應(yīng)題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務(wù)必在這個方向上進行突破。

(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。

位移矢量示意圖如圖19所示。根據(jù)運動學規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。

(學生活動)這兩個加速度矢量有什么關(guān)系?

沿斜面方向、垂直斜面方向建x 、y坐標,可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學生活動)思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。

解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關(guān)系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。

(學生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設(shè)全程時間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進動力學在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動力學方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習題。

查看答案和解析>>

第九部分 穩(wěn)恒電流

第一講 基本知識介紹

第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質(zhì)的導電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質(zhì)導電的情形有什么區(qū)別。

應(yīng)該說,第一塊的知識和高考考綱對應(yīng)得比較好,深化的部分是對復(fù)雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內(nèi)容,但近幾年的考試已經(jīng)很少涉及,以至于很多奧賽培訓資料都把它刪掉了。鑒于在奧賽考綱中這部分內(nèi)容還保留著,我們還是想粗略地介紹一下。

一、歐姆定律

1、電阻定律

a、電阻定律 R = ρ

b、金屬的電阻率 ρ = ρ0(1 + αt)

2、歐姆定律

a、外電路歐姆定律 U = IR ,順著電流方向電勢降落

b、含源電路歐姆定律

在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負極電勢降落,負極到正極電勢升高(與電流方向無關(guān)),可以得到以下關(guān)系

UA ? IR ? ε ? Ir = UB 

這就是含源電路歐姆定律。

c、閉合電路歐姆定律

在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為

UA + IR ? ε + Ir = UB = UA

 ε = IR + Ir ,或 I = 

這就是閉合電路歐姆定律。值得注意的的是:①對于復(fù)雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯(lián),也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個電阻的串、并聯(lián)或混聯(lián),但不能包含電源。

二、復(fù)雜電路的計算

1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網(wǎng)絡(luò),可以用一個電壓源和電阻串聯(lián)的二端網(wǎng)絡(luò)來等效。(事實上,也可等效為“電流源和電阻并聯(lián)的的二端網(wǎng)絡(luò)”——這就成了諾頓定理。)

應(yīng)用方法:其等效電路的電壓源的電動勢等于網(wǎng)絡(luò)的開路電壓,其串聯(lián)電阻等于從端鈕看進去該網(wǎng)絡(luò)中所有獨立源為零值時的等效電阻。

2、基爾霍夫(克希科夫)定律

a、基爾霍夫第一定律:在任一時刻流入電路中某一分節(jié)點的電流強度的總和,等于從該點流出的電流強度的總和。

例如,在圖8-2中,針對節(jié)點P ,有

I2 + I3 = I1 

基爾霍夫第一定律也被稱為“節(jié)點電流定律”,它是電荷受恒定律在電路中的具體體現(xiàn)。

對于基爾霍夫第一定律的理解,近來已經(jīng)拓展為:流入電路中某一“包容塊”的電流強度的總和,等于從該“包容塊”流出的電流強度的總和。

b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動勢的代數(shù)和,等于各部分電阻(在交流電路中為阻抗)與電流強度乘積的代數(shù)和。

例如,在圖8-2中,針對閉合回路① ,有

ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學們可以列方程 UP = … = UP得到和上面完全相同的式子)。

3、Y?Δ變換

在難以看清串、并聯(lián)關(guān)系的電路中,進行“Y型?Δ型”的相互轉(zhuǎn)換常常是必要的。在圖8-3所示的電路中

☆同學們可以證明Δ→ Y的結(jié)論…

Rc = 

Rb = 

Ra = 

Y→Δ的變換稍稍復(fù)雜一些,但我們?nèi)匀豢梢缘玫?/p>

R1 = 

R2 = 

R3 = 

三、電功和電功率

1、電源

使其他形式的能量轉(zhuǎn)變?yōu)殡娔艿难b置。如發(fā)電機、電池等。發(fā)電機是將機械能轉(zhuǎn)變?yōu)殡娔;干電池、蓄電池是將化學能轉(zhuǎn)變?yōu)殡娔埽还怆姵厥菍⒐饽苻D(zhuǎn)變?yōu)殡娔;原子電池是將原子核放射能轉(zhuǎn)變?yōu)殡娔埽辉陔娮釉O(shè)備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。

電源電動勢定義為電源的開路電壓,內(nèi)阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據(jù)此不難推出相同電源串聯(lián)、并聯(lián),甚至不同電源串聯(lián)、并聯(lián)的時的電動勢和內(nèi)阻的值。

例如,電動勢、內(nèi)阻分別為ε1 、r1和ε2 、r2的電源并聯(lián),構(gòu)成的新電源的電動勢ε和內(nèi)阻r分別為(☆師生共同推導…)

ε = 

r = 

2、電功、電功率

電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內(nèi)電場力所作的功叫做電功率P 。

計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 

對非純電阻電路,電功和電熱的關(guān)系依據(jù)能量守恒定律求解。 

四、物質(zhì)的導電性

在不同的物質(zhì)中,電荷定向移動形成電流的規(guī)律并不是完全相同的。

1、金屬中的電流

即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。

2、液體導電

能夠?qū)щ姷囊后w叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負離子導電是液體導電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。

在電解液中加電場時,在兩個電極上(或電極旁)同時產(chǎn)生化學反應(yīng)的過程叫作“電解”。電解的結(jié)果是在兩個極板上(或電極旁)生成新的物質(zhì)。

液體導電遵從法拉第電解定律——

法拉第電解第一定律:電解時在電極上析出或溶解的物質(zhì)的質(zhì)量和電流強度、跟通電時間成正比。表達式:m = kIt = KQ (式中Q為析出質(zhì)量為m的物質(zhì)所需要的電量;K為電化當量,電化當量的數(shù)值隨著被析出的物質(zhì)種類而不同,某種物質(zhì)的電化當量在數(shù)值上等于通過1C電量時析出的該種物質(zhì)的質(zhì)量,其單位為kg/C。)

法拉第電解第二定律:物質(zhì)的電化當量K和它的化學當量成正比。某種物質(zhì)的化學當量是該物質(zhì)的摩爾質(zhì)量M(克原子量)和它的化合價n的比值,即 K =  ,而F為法拉第常數(shù),對任何物質(zhì)都相同,F(xiàn) = 9.65×104C/mol 。

將兩個定律聯(lián)立可得:m = Q 。

3、氣體導電

氣體導電是很不容易的,它的前提是氣體中必須出現(xiàn)可以定向移動的離子或電子。按照“載流子”出現(xiàn)方式的不同,可以把氣體放電分為兩大類——

a、被激放電

在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內(nèi),通電的燈絲也會發(fā)射電子,這些“載流子”均會在電場力作用下產(chǎn)生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有

b、自激放電

但是,當電場足夠強,電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現(xiàn)象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時間內(nèi)出現(xiàn)了大量的電子和正離子,電流亦迅速增大。這種現(xiàn)象被稱為自激放電。自激放電不遵從歐姆定律。

常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。

4、超導現(xiàn)象

據(jù)金屬電阻率和溫度的關(guān)系,電阻率會隨著溫度的降低和降低。當電阻率降為零時,稱為超導現(xiàn)象。電阻率為零時對應(yīng)的溫度稱為臨界溫度。超導現(xiàn)象首先是荷蘭物理學家昂尼斯發(fā)現(xiàn)的。

超導的應(yīng)用前景是顯而易見且相當廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產(chǎn)業(yè)化的價值不大,為了解決這個矛盾,科學家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當今前沿科技的一個熱門領(lǐng)域。當前人們的研究主要是集中在合成材料方面,臨界溫度已經(jīng)超過100K,當然,這個溫度距產(chǎn)業(yè)化的期望值還很遠。

5、半導體

半導體的電阻率界于導體和絕緣體之間,且ρ

查看答案和解析>>


同步練習冊答案