已知數(shù)列的首項(xiàng).前項(xiàng)和為.且..分 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列的首項(xiàng)為,其前項(xiàng)和為,且對(duì)任意正整數(shù)有:、成等差數(shù)列.

(1)求證:數(shù)列成等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式.

 

查看答案和解析>>

已知數(shù)列的首項(xiàng)為,其前項(xiàng)和為,且對(duì)任意正整數(shù)有:、、成等差數(shù)列.
(1)求證:數(shù)列成等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

已知數(shù)列的首項(xiàng)為,其前項(xiàng)和為,且對(duì)任意正整數(shù)有:、、成等差數(shù)列.
(1)求證:數(shù)列成等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項(xiàng)公式;

(2)   若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來的順序組成一個(gè)新的數(shù)列,試寫出數(shù)列的通項(xiàng)公式;

(3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說明理由.

【解析】第一問中解:由,,

又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.

此時(shí)也滿足,則所求常數(shù)的值為1且

第二問中,解:由等比數(shù)列的性質(zhì)得:

(i)當(dāng)時(shí),;

(ii) 當(dāng)時(shí),,

所以

第三問假設(shè)存在正整數(shù)n滿足條件,則,

則(i)當(dāng)時(shí),

,

 

查看答案和解析>>

 

已知數(shù)列是首項(xiàng)為1的等差數(shù)列,其公差,且、成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;       

(2) 設(shè)數(shù)列的前項(xiàng)和為,求的最大值

 

 

 

 

 

 

 

 

 

查看答案和解析>>

一、1~10 DBDAB  DBCCB

二、11、2 ;12、2;13、;14、;15、伸長(zhǎng) ;伸長(zhǎng) 6;左

三、16 解:--------------6

----------------------------------------8

(或證

17解: (1)    -------------------     3′

                    4′

 (2)               6′

                        8′

18.(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知                       4′

   (2)ξ可取1,2,3,4.  ξ的分布列為

ξ

1

2

3

4

P

                                                              7

                                        8

19解: ⑴                            4

         6′

                                               7′

                          8

20 解:(1)用反證法(略)                      3

(2)根據(jù)函數(shù)圖像分類,當(dāng)時(shí),無最大值;當(dāng)時(shí),最大值,且的最大值為;                             6

(3)                           7

                                 8

 


同步練習(xí)冊(cè)答案