(A)(.) (B)(.2) 查看更多

 

題目列表(包括答案和解析)

(A)(不等式選做題)
若關(guān)于x的不等式|a|≥|x+1|+|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(幾何證明選做題)
如圖,A,E是半圓周上的兩個三等分點,直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點F,則AF的長為
2
3
3
2
3
3

(C)(坐標(biāo)系與參數(shù)方程選做題) 
在已知極坐標(biāo)系中,已知圓ρ=2cosθ與直線 3ρcosθ+4ρsinθ+a=0相切,則實數(shù)a=
2或-8
2或-8

查看答案和解析>>

(A)(不等式選做題)不等式|x+1|-|x-2|>2的解集為________.
(B)(幾何證明選做題)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為6cm,8cm,以AC為直徑的圓與AB交于點D,則AD=________cm.
(C)(坐標(biāo)系與參數(shù)方程選做題)圓C的參數(shù)方程數(shù)學(xué)公式(α為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=1,則直線l與圓C的交點的直角坐標(biāo)是________.

查看答案和解析>>

(A)將圓M:x2+y2=a(a>0)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的,正好與直線x-y=1相切,若以原點為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,則圓M的極坐標(biāo)方程為       

    (B)關(guān)于x的不等式:2-x2>|x-a|至少有一個負(fù)數(shù)解,則實數(shù)a的取值范圍是   

 

查看答案和解析>>

(A)在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線C2,若曲線C1與C2交于A、B兩點,則線段AB=   
(B)若|x-1|+x-2||+|x-3|≥m恒成立,則m的取值范圍為   

查看答案和解析>>

(A)將圓M:x2+y2=a(a>0)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的,正好與直線x-y=1相切,若以原點為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,則圓M的極坐標(biāo)方程為       
(B)關(guān)于x的不等式:2-x2>|x-a|至少有一個負(fù)數(shù)解,則實數(shù)a的取值范圍是   

查看答案和解析>>

 

一、              選擇題(本大題共8小題,每小題5分,共40分)

 

題號

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

答案

C

C

A

B

C

A

D

C

 

 

二、填空題(本大題共6小題,每小題5分,有兩空的小題,第一空3分,第二空2分,共30分)

(9)7    (10)2    (11)     (12)2,12π    (13)1,    (14)⑤

三、解答題(本大題共6小題,共80分.解答應(yīng)寫出文字說明,演算步驟或證明過程)

(15)(本小題共12分)

解:(Ⅰ)f(x)=2sinxcosx+(2cos2x1)

=sin2x+cos2x …………………………………………2分(化對一個給一分)

=2sin(2x+)………………………………………………………………………3分

x

ωx+

0

2

f(x)

0

2

0

2

0

…………………………………………………………………………………………6分

(x的值對兩個給一分,全對給2分,不出現(xiàn)0.5分.f(x)的值全對給1分)

圖象略.(圖象完全正確給分)………………………………………………………8分

(Ⅱ)由2kπ+≤2x+≤2kπ+(k∈) …………………………………………9分

得kπ+ ≤x≤kπ+(k∈)

單調(diào)減區(qū)間為(k∈)………………………………………12分

注:(k∈)也可以
(16)(本小題共14分)

解:(Ⅰ)證明:連接AC1,設(shè)AC1∩A1C=E,連接DE…………………………1分

∵A1B1C1-ABC是直三棱柱,且AC=AA1=

∴AA1C1C是正方形,E是AC1中點,

又D為AB中點  ∴ED∥BC1…………………………………………3分

又ED平面A1CD,BC1平面A1CD

∴BC1∥平面A1CD………………………………………………………5分

(Ⅱ)法一:設(shè)H是AC中點,F(xiàn)是EC中點,連接

DH,HF,F(xiàn)D……………………………6分

∵D為AB中點,

∴DH∥BC,同理可證HF∥AE,又AC⊥CB,

故DH⊥AC

又側(cè)棱AA1⊥平面ABC,

∴AA1⊥DH  ∴DH⊥平面AA1C1C………8分

由(Ⅰ)得AA1C1C是正方形,則A1C⊥AE

∴A1C⊥HF

∵HF是DF在平面AA1C1C上的射影,

∴DF⊥A1C

∴∠DFH是二面角A-A1C-D的平面角…10分

又DH=…………………………………12分

∴在直角三角形DFH中,……………13分

∴二面角A-A1C-D的大小為………………………………14分

法二:在直三棱柱A1B1C1-ABC中,∵AC⊥CB ∴分別以CA,CB,CC1所在的直線為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系C-xyz.因為BC=1,AA1=AC=,則C(0,0,0),A(,0,0),A1,0,),B(0,1,0),,… 7分設(shè)平面A1DC的法向量為n=(x,y,z),則

…………………………………8分

=,=(,0,),

  則,……9分

 

取x=1,得平面A1DC的一個法向量為n=(1,,1).…………10分

m==(0,1,0)為平面CAA1C1的一個法向量.…………………11分

  ………………………………12分
由圖可知,二面角A-A1C-D的大小為……………………14分

(17)(本小題共14分)

解:(Ⅰ)設(shè)點P的坐標(biāo)為(x,y),……1分

,……3分

化簡可得(x5)2+y2=16即為所求……5分

(Ⅱ)曲線C是以點(5,0)為圓心,4為半徑的

圓,如圖則直線l2是此圓的切線,連接CQ,則

|QM|=…7分

當(dāng)CQ⊥l1時,|CQ|取最小值 …………………………………………8分

|CQ|=……10分(公式、結(jié)果各一分)

此時|QM|的最小值為,…………………………………12分

這樣的直線l2有兩條,設(shè)滿足條件的兩個公共點為M1,M2,

易證四邊形M1CM2Q是正方形

∴l(xiāng)2的方程是x=1或y=4……………………………………………14分

(18)(本小題共13分)

解:(Ⅰ)無故障使用時間不超過一年的概率為

無故障使用時間超過一年不超過三年的概率為,

無故障使用時間超過三年的概率為,…………1分

設(shè)銷售兩臺這種家用電器的銷售利潤總和為400元的事件為A……2分

………………………………………………………7分

答:銷售兩臺這種家用電器的銷售利潤總和為400元的概率為.

(Ⅱ)設(shè)銷售三臺這種家用電器的銷售利潤總和為300元的事件為B……8分

…………12分(兩類情況,每類2分)

……………………………………………………………13分

答:銷售三臺這種家用電器的銷售利潤總和為300元的概率為.

 

 

(19)(本小題共14分)

解:(Ⅰ)由已知可得

,……………………………………………………………2分

所以a=2,b=1,…………………………………………………………3分

橢圓方程為 …………………………………………………4分

(Ⅱ)α+β是定值π ……………………………………………………5分

由(Ⅰ),A2(2,0),B(0,1),且l∥A2B

所以直線l的斜率,……………………………………6分

設(shè)直線l的方程為y=x+m,P(x1,y1),Q(x2,y2

 …………………………………………………………7分

∴Δ=4m24(2m22)=84m2≥0,即≤m≤…………………8分

 …………………………………………………………9分

∵P、Q兩點不是橢圓的頂點 ∴α≠、β≠

 

…………………………10分

又因為y1=x1+m,y2=x2+m

=

=

  又α,β∈(0,π)

∴α+β∈(0,2π)

∴α+β=π是定值.…………………………………………………………14分

 

 

 

 

 

 

 

(20)(本小題共13分)

解:(Ⅰ)

,

即數(shù)列是以0為首項,1為公差的等差數(shù)列……………………3分

,an=(n1)qn  (n=1,2,3,…)

(Ⅱ)bn=an+2n=(n-1)qn+2n ……………………………………………………4分

∴b1=2,b2=q2+4,b3=2q3+8…………………………………………………5分

b1b3=(q2+4)22(2q3+8)=(q4+8q2+16) 4q316

=q44q3+8q2=q2(q24q+8)=q2[(q2)2+4]>0

>b1b3…………………………………………………………………8分

(Ⅲ)∵bn=(n1)qn+2n,n=1,2,3…,∴bn >0

b1=2,b1=q2+4,bn+1=nqn+1+2n+1

,

………………………………………9分

①當(dāng)n=1時,b2bnb1bn+1,即

②當(dāng)n≥2時,∵q>0,q2+4≥2?q?2=4q

∴(q2+4)(n1) 2nq≥4(n1)q2nq=2(n-2)q≥0又q2?2n>0

∴b2bnb1bn+1>0

由①②得≥0,即對于任意的正整數(shù)n, 恒成立

故所求的正整數(shù)k=1.…………………………………………………………13分

說明:其他正確解法按相應(yīng)步驟給分.

 


同步練習(xí)冊答案