解:(1)以O(shè)為原點(diǎn).OB.OC.OA分別為x.y.z軸.建立空間直角坐標(biāo)系.則A.C. 查看更多

 

題目列表(包括答案和解析)

(2012•蕪湖二模)如圖,直角坐標(biāo)系XOY中,點(diǎn)F在x軸正半軸上,△OFG的面積為S.且
OF
FG
=1
,設(shè)|
OF
|=c(c≥2)
,S=
3
4
c

(1)以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓E經(jīng)過點(diǎn)G,求點(diǎn)G的縱坐標(biāo).
(2)在(1)的條件下,當(dāng)|
OG
|
取最小值時,求橢圓E的標(biāo)準(zhǔn)方程.
(3)在(2)的條件下,設(shè)點(diǎn)A、B分別為橢圓E的左、右頂點(diǎn),點(diǎn)C是橢圓的下頂點(diǎn),點(diǎn)P在橢圓E上(與點(diǎn)A、B均不重合),點(diǎn)D在直線PA上,若直線PB的方程為,且
AP
CD
=0
,試求CD直線方程.

查看答案和解析>>

精英家教網(wǎng)如圖,一列載著危重病人的火車從O地出發(fā),沿射線OA方向行駛,其中sina=
10
10
,在距離O地5a(a為正常數(shù))千米,北偏東β角的N處住有一位醫(yī)學(xué)專家,其中sinβ=
3
5
,現(xiàn)120指揮中心緊急征調(diào)離O地正東p千米B處的救護(hù)車,先到N處載上醫(yī)學(xué)專家,再全速趕往乘有危重病人的火車,并在C處相遇.經(jīng)計(jì)算,當(dāng)兩車行駛的路線與OB所圍成的三角形OBC面積S最小時,搶救最及時.
(1)在以O(shè)為原點(diǎn),正北方向?yàn)閥軸的直角坐標(biāo)系中,求射線OA所在的直線方程;
(2)求S關(guān)于p的函數(shù)關(guān)系式S=f(p);
(3)當(dāng)p為何值時,搶救最及時?

查看答案和解析>>

以O(shè)為原點(diǎn),
OA
所在直線為x軸,建立如圖所示的直角坐標(biāo)系.若
OA
AG
=1
,點(diǎn)A的坐標(biāo)為(t,0),t∈(0,+∞),點(diǎn)G的坐標(biāo)為(m,3).
(1)若以O(shè)為中心,A為頂點(diǎn)的雙曲線經(jīng)過點(diǎn)G,求當(dāng)|
OG
|
取最小值時雙曲線C的方程;
(2)過點(diǎn)N(0,1)能否作出直線l,使l與雙曲線C交于S,T兩點(diǎn),且OS⊥OT?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

①△ABC是邊長為1正三角形,O為平面上任意一點(diǎn),則|
OA
+
OB
-2
OC
|=
 

②結(jié)合三角函數(shù)線解不等式tan(2x+
π
3
)<
3
,解集為
 

查看答案和解析>>

在長方體OABC-O1A1B1C1中,OO1=a,OA=b,OC=c,M是BB1中點(diǎn),N是CC1中點(diǎn),P是AA1上一點(diǎn),且AP=2PA1,Q是OA反向延長線上一點(diǎn),OA=2QO,以O(shè)為原點(diǎn),OA,OC,OO1為x軸、y軸、z軸的正方向,
(1)求B、B1、M、N、P、Q的坐標(biāo);
(2)求QM的距離.

查看答案和解析>>


同步練習(xí)冊答案